# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmengine import numpy as np import torch def vit_jax_to_torch(jax_weights, num_layer=12): torch_weights = dict() # patch embedding conv_filters = jax_weights['embedding/kernel'] conv_filters = conv_filters.permute(3, 2, 0, 1) torch_weights['patch_embed.projection.weight'] = conv_filters torch_weights['patch_embed.projection.bias'] = jax_weights[ 'embedding/bias'] # pos embedding torch_weights['pos_embed'] = jax_weights[ 'Transformer/posembed_input/pos_embedding'] # cls token torch_weights['cls_token'] = jax_weights['cls'] # head torch_weights['ln1.weight'] = jax_weights['Transformer/encoder_norm/scale'] torch_weights['ln1.bias'] = jax_weights['Transformer/encoder_norm/bias'] # transformer blocks for i in range(num_layer): jax_block = f'Transformer/encoderblock_{i}' torch_block = f'layers.{i}' # attention norm torch_weights[f'{torch_block}.ln1.weight'] = jax_weights[ f'{jax_block}/LayerNorm_0/scale'] torch_weights[f'{torch_block}.ln1.bias'] = jax_weights[ f'{jax_block}/LayerNorm_0/bias'] # attention query_weight = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/query/kernel'] query_bias = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/query/bias'] key_weight = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/key/kernel'] key_bias = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/key/bias'] value_weight = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/value/kernel'] value_bias = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/value/bias'] qkv_weight = torch.from_numpy( np.stack((query_weight, key_weight, value_weight), 1)) qkv_weight = torch.flatten(qkv_weight, start_dim=1) qkv_bias = torch.from_numpy( np.stack((query_bias, key_bias, value_bias), 0)) qkv_bias = torch.flatten(qkv_bias, start_dim=0) torch_weights[f'{torch_block}.attn.attn.in_proj_weight'] = qkv_weight torch_weights[f'{torch_block}.attn.attn.in_proj_bias'] = qkv_bias to_out_weight = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/out/kernel'] to_out_weight = torch.flatten(to_out_weight, start_dim=0, end_dim=1) torch_weights[ f'{torch_block}.attn.attn.out_proj.weight'] = to_out_weight torch_weights[f'{torch_block}.attn.attn.out_proj.bias'] = jax_weights[ f'{jax_block}/MultiHeadDotProductAttention_1/out/bias'] # mlp norm torch_weights[f'{torch_block}.ln2.weight'] = jax_weights[ f'{jax_block}/LayerNorm_2/scale'] torch_weights[f'{torch_block}.ln2.bias'] = jax_weights[ f'{jax_block}/LayerNorm_2/bias'] # mlp torch_weights[f'{torch_block}.ffn.layers.0.0.weight'] = jax_weights[ f'{jax_block}/MlpBlock_3/Dense_0/kernel'] torch_weights[f'{torch_block}.ffn.layers.0.0.bias'] = jax_weights[ f'{jax_block}/MlpBlock_3/Dense_0/bias'] torch_weights[f'{torch_block}.ffn.layers.1.weight'] = jax_weights[ f'{jax_block}/MlpBlock_3/Dense_1/kernel'] torch_weights[f'{torch_block}.ffn.layers.1.bias'] = jax_weights[ f'{jax_block}/MlpBlock_3/Dense_1/bias'] # transpose weights for k, v in torch_weights.items(): if 'weight' in k and 'patch_embed' not in k and 'ln' not in k: v = v.permute(1, 0) torch_weights[k] = v return torch_weights def main(): # stole refactoring code from Robin Strudel, thanks parser = argparse.ArgumentParser( description='Convert keys from jax official pretrained vit models to ' 'MMSegmentation style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() jax_weights = np.load(args.src) jax_weights_tensor = {} for key in jax_weights.files: value = torch.from_numpy(jax_weights[key]) jax_weights_tensor[key] = value if 'L_16-i21k' in args.src: num_layer = 24 else: num_layer = 12 torch_weights = vit_jax_to_torch(jax_weights_tensor, num_layer) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(torch_weights, args.dst) if __name__ == '__main__': main()