# Copyright (c) OpenMMLab. All rights reserved. import argparse import glob import os import os.path as osp import shutil import tempfile import zipfile import mmcv import numpy as np from mmengine.utils import ProgressBar, mkdir_or_exist from PIL import Image iSAID_palette = \ { 0: (0, 0, 0), 1: (0, 0, 63), 2: (0, 63, 63), 3: (0, 63, 0), 4: (0, 63, 127), 5: (0, 63, 191), 6: (0, 63, 255), 7: (0, 127, 63), 8: (0, 127, 127), 9: (0, 0, 127), 10: (0, 0, 191), 11: (0, 0, 255), 12: (0, 191, 127), 13: (0, 127, 191), 14: (0, 127, 255), 15: (0, 100, 155) } iSAID_invert_palette = {v: k for k, v in iSAID_palette.items()} def iSAID_convert_from_color(arr_3d, palette=iSAID_invert_palette): """RGB-color encoding to grayscale labels.""" arr_2d = np.zeros((arr_3d.shape[0], arr_3d.shape[1]), dtype=np.uint8) for c, i in palette.items(): m = np.all(arr_3d == np.array(c).reshape(1, 1, 3), axis=2) arr_2d[m] = i return arr_2d def slide_crop_image(src_path, out_dir, mode, patch_H, patch_W, overlap): img = np.asarray(Image.open(src_path).convert('RGB')) img_H, img_W, _ = img.shape if img_H < patch_H and img_W > patch_W: img = mmcv.impad(img, shape=(patch_H, img_W), pad_val=0) img_H, img_W, _ = img.shape elif img_H > patch_H and img_W < patch_W: img = mmcv.impad(img, shape=(img_H, patch_W), pad_val=0) img_H, img_W, _ = img.shape elif img_H < patch_H and img_W < patch_W: img = mmcv.impad(img, shape=(patch_H, patch_W), pad_val=0) img_H, img_W, _ = img.shape for x in range(0, img_W, patch_W - overlap): for y in range(0, img_H, patch_H - overlap): x_str = x x_end = x + patch_W if x_end > img_W: diff_x = x_end - img_W x_str -= diff_x x_end = img_W y_str = y y_end = y + patch_H if y_end > img_H: diff_y = y_end - img_H y_str -= diff_y y_end = img_H img_patch = img[y_str:y_end, x_str:x_end, :] img_patch = Image.fromarray(img_patch.astype(np.uint8)) image = osp.basename(src_path).split('.')[0] + '_' + str( y_str) + '_' + str(y_end) + '_' + str(x_str) + '_' + str( x_end) + '.png' # print(image) save_path_image = osp.join(out_dir, 'img_dir', mode, str(image)) img_patch.save(save_path_image, format='BMP') def slide_crop_label(src_path, out_dir, mode, patch_H, patch_W, overlap): label = mmcv.imread(src_path, channel_order='rgb') label = iSAID_convert_from_color(label) img_H, img_W = label.shape if img_H < patch_H and img_W > patch_W: label = mmcv.impad(label, shape=(patch_H, img_W), pad_val=255) img_H = patch_H elif img_H > patch_H and img_W < patch_W: label = mmcv.impad(label, shape=(img_H, patch_W), pad_val=255) img_W = patch_W elif img_H < patch_H and img_W < patch_W: label = mmcv.impad(label, shape=(patch_H, patch_W), pad_val=255) img_H = patch_H img_W = patch_W for x in range(0, img_W, patch_W - overlap): for y in range(0, img_H, patch_H - overlap): x_str = x x_end = x + patch_W if x_end > img_W: diff_x = x_end - img_W x_str -= diff_x x_end = img_W y_str = y y_end = y + patch_H if y_end > img_H: diff_y = y_end - img_H y_str -= diff_y y_end = img_H lab_patch = label[y_str:y_end, x_str:x_end] lab_patch = Image.fromarray(lab_patch.astype(np.uint8), mode='P') image = osp.basename(src_path).split('.')[0].split( '_')[0] + '_' + str(y_str) + '_' + str(y_end) + '_' + str( x_str) + '_' + str(x_end) + '_instance_color_RGB' + '.png' lab_patch.save(osp.join(out_dir, 'ann_dir', mode, str(image))) def parse_args(): parser = argparse.ArgumentParser( description='Convert iSAID dataset to mmsegmentation format') parser.add_argument('dataset_path', help='iSAID folder path') parser.add_argument('--tmp_dir', help='path of the temporary directory') parser.add_argument('-o', '--out_dir', help='output path') parser.add_argument( '--patch_width', default=896, type=int, help='Width of the cropped image patch') parser.add_argument( '--patch_height', default=896, type=int, help='Height of the cropped image patch') parser.add_argument( '--overlap_area', default=384, type=int, help='Overlap area') args = parser.parse_args() return args def main(): args = parse_args() dataset_path = args.dataset_path # image patch width and height patch_H, patch_W = args.patch_width, args.patch_height overlap = args.overlap_area # overlap area if args.out_dir is None: out_dir = osp.join('data', 'iSAID') else: out_dir = args.out_dir print('Making directories...') mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train')) mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val')) mkdir_or_exist(osp.join(out_dir, 'img_dir', 'test')) mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train')) mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val')) mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'test')) assert os.path.exists(os.path.join(dataset_path, 'train')), \ f'train is not in {dataset_path}' assert os.path.exists(os.path.join(dataset_path, 'val')), \ f'val is not in {dataset_path}' assert os.path.exists(os.path.join(dataset_path, 'test')), \ f'test is not in {dataset_path}' with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: for dataset_mode in ['train', 'val', 'test']: # for dataset_mode in [ 'test']: print(f'Extracting {dataset_mode}ing.zip...') img_zipp_list = glob.glob( os.path.join(dataset_path, dataset_mode, 'images', '*.zip')) print('Find the data', img_zipp_list) for img_zipp in img_zipp_list: zip_file = zipfile.ZipFile(img_zipp) zip_file.extractall(os.path.join(tmp_dir, dataset_mode, 'img')) src_path_list = glob.glob( os.path.join(tmp_dir, dataset_mode, 'img', 'images', '*.png')) src_prog_bar = ProgressBar(len(src_path_list)) for i, img_path in enumerate(src_path_list): if dataset_mode != 'test': slide_crop_image(img_path, out_dir, dataset_mode, patch_H, patch_W, overlap) else: shutil.move(img_path, os.path.join(out_dir, 'img_dir', dataset_mode)) src_prog_bar.update() if dataset_mode != 'test': label_zipp_list = glob.glob( os.path.join(dataset_path, dataset_mode, 'Semantic_masks', '*.zip')) for label_zipp in label_zipp_list: zip_file = zipfile.ZipFile(label_zipp) zip_file.extractall( os.path.join(tmp_dir, dataset_mode, 'lab')) lab_path_list = glob.glob( os.path.join(tmp_dir, dataset_mode, 'lab', 'images', '*.png')) lab_prog_bar = ProgressBar(len(lab_path_list)) for i, lab_path in enumerate(lab_path_list): slide_crop_label(lab_path, out_dir, dataset_mode, patch_H, patch_W, overlap) lab_prog_bar.update() print('Removing the temporary files...') print('Done!') if __name__ == '__main__': main()