Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import glob | |
import math | |
import os | |
import os.path as osp | |
import mmcv | |
import numpy as np | |
from mmengine.utils import ProgressBar | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert levir-cd dataset to mmsegmentation format') | |
parser.add_argument('--dataset_path', help='potsdam folder path') | |
parser.add_argument('-o', '--out_dir', help='output path') | |
parser.add_argument( | |
'--clip_size', | |
type=int, | |
help='clipped size of image after preparation', | |
default=256) | |
parser.add_argument( | |
'--stride_size', | |
type=int, | |
help='stride of clipping original images', | |
default=256) | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
input_folder = args.dataset_path | |
png_files = glob.glob( | |
os.path.join(input_folder, '**/*.png'), recursive=True) | |
output_folder = args.out_dir | |
prog_bar = ProgressBar(len(png_files)) | |
for png_file in png_files: | |
new_path = os.path.join( | |
output_folder, | |
os.path.relpath(os.path.dirname(png_file), input_folder)) | |
os.makedirs(os.path.dirname(new_path), exist_ok=True) | |
label = False | |
if 'label' in png_file: | |
label = True | |
clip_big_image(png_file, new_path, args, label) | |
prog_bar.update() | |
def clip_big_image(image_path, clip_save_dir, args, to_label=False): | |
image = mmcv.imread(image_path) | |
h, w, c = image.shape | |
clip_size = args.clip_size | |
stride_size = args.stride_size | |
num_rows = math.ceil((h - clip_size) / stride_size) if math.ceil( | |
(h - clip_size) / | |
stride_size) * stride_size + clip_size >= h else math.ceil( | |
(h - clip_size) / stride_size) + 1 | |
num_cols = math.ceil((w - clip_size) / stride_size) if math.ceil( | |
(w - clip_size) / | |
stride_size) * stride_size + clip_size >= w else math.ceil( | |
(w - clip_size) / stride_size) + 1 | |
x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1)) | |
xmin = x * clip_size | |
ymin = y * clip_size | |
xmin = xmin.ravel() | |
ymin = ymin.ravel() | |
xmin_offset = np.where(xmin + clip_size > w, w - xmin - clip_size, | |
np.zeros_like(xmin)) | |
ymin_offset = np.where(ymin + clip_size > h, h - ymin - clip_size, | |
np.zeros_like(ymin)) | |
boxes = np.stack([ | |
xmin + xmin_offset, ymin + ymin_offset, | |
np.minimum(xmin + clip_size, w), | |
np.minimum(ymin + clip_size, h) | |
], | |
axis=1) | |
if to_label: | |
image[image == 255] = 1 | |
image = image[:, :, 0] | |
for box in boxes: | |
start_x, start_y, end_x, end_y = box | |
clipped_image = image[start_y:end_y, start_x:end_x] \ | |
if to_label else image[start_y:end_y, start_x:end_x, :] | |
idx = osp.basename(image_path).split('.')[0] | |
mmcv.imwrite( | |
clipped_image.astype(np.uint8), | |
osp.join(clip_save_dir, | |
f'{idx}_{start_x}_{start_y}_{end_x}_{end_y}.png')) | |
if __name__ == '__main__': | |
main() | |