KyanChen's picture
Upload 1861 files
3b96cb1
"""
Codegoni A, Lombardi G, Ferrari A.
TINYCD: A (Not So) Deep Learning Model For Change Detection[J].
arXiv preprint arXiv:2207.13159, 2022.
The code in this file is borrowed from:
https://github.com/AndreaCodegoni/Tiny_model_4_CD
"""
from typing import List, Optional
import torchvision
from torch import Tensor, reshape, stack
from torch.nn import (Conv2d, InstanceNorm2d, Module, ModuleList, PReLU,
Sequential, Upsample)
from opencd.registry import MODELS
class PixelwiseLinear(Module):
def __init__(
self,
fin: List[int],
fout: List[int],
last_activation: Module = None,
) -> None:
assert len(fout) == len(fin)
super().__init__()
n = len(fin)
self._linears = Sequential(
*[
Sequential(
Conv2d(fin[i], fout[i], kernel_size=1, bias=True),
PReLU()
if i < n - 1 or last_activation is None
else last_activation,
)
for i in range(n)
]
)
def forward(self, x: Tensor) -> Tensor:
# Processing the tensor:
return self._linears(x)
class MixingBlock(Module):
def __init__(
self,
ch_in: int,
ch_out: int,
):
super().__init__()
self._convmix = Sequential(
Conv2d(ch_in, ch_out, 3, groups=ch_out, padding=1),
PReLU(),
InstanceNorm2d(ch_out),
)
def forward(self, x: Tensor, y: Tensor) -> Tensor:
# Packing the tensors and interleaving the channels:
mixed = stack((x, y), dim=2)
mixed = reshape(mixed, (x.shape[0], -1, x.shape[2], x.shape[3]))
# Mixing:
return self._convmix(mixed)
class MixingMaskAttentionBlock(Module):
"""use the grouped convolution to make a sort of attention"""
def __init__(
self,
ch_in: int,
ch_out: int,
fin: List[int],
fout: List[int],
generate_masked: bool = False,
):
super().__init__()
self._mixing = MixingBlock(ch_in, ch_out)
self._linear = PixelwiseLinear(fin, fout)
self._final_normalization = InstanceNorm2d(ch_out) if generate_masked else None
self._mixing_out = MixingBlock(ch_in, ch_out) if generate_masked else None
def forward(self, x: Tensor, y: Tensor) -> Tensor:
z_mix = self._mixing(x, y)
z = self._linear(z_mix)
z_mix_out = 0 if self._mixing_out is None else self._mixing_out(x, y)
return (
z
if self._final_normalization is None
else self._final_normalization(z_mix_out * z)
)
class UpMask(Module):
def __init__(
self,
scale_factor: float,
nin: int,
nout: int,
):
super().__init__()
self._upsample = Upsample(
scale_factor=scale_factor, mode="bilinear", align_corners=True
)
self._convolution = Sequential(
Conv2d(nin, nin, 3, 1, groups=nin, padding=1),
PReLU(),
InstanceNorm2d(nin),
Conv2d(nin, nout, kernel_size=1, stride=1),
PReLU(),
InstanceNorm2d(nout),
)
def forward(self, x: Tensor, y: Optional[Tensor] = None) -> Tensor:
x = self._upsample(x)
if y is not None:
x = x * y
return self._convolution(x)
def _get_backbone(
bkbn_name, pretrained, output_layer_bkbn, freeze_backbone
) -> ModuleList:
# The whole model:
entire_model = getattr(torchvision.models, bkbn_name)(
pretrained=pretrained
).features
# Slicing it:
derived_model = ModuleList([])
for name, layer in entire_model.named_children():
derived_model.append(layer)
if name == output_layer_bkbn:
break
# Freezing the backbone weights:
if freeze_backbone:
for param in derived_model.parameters():
param.requires_grad = False
return derived_model
@MODELS.register_module()
class TinyCD(Module):
def __init__(
self,
in_channels,
bkbn_name="efficientnet_b4",
pretrained=True,
output_layer_bkbn="3",
freeze_backbone=False,
):
super().__init__()
# Load the pretrained backbone according to parameters:
self._backbone = _get_backbone(
bkbn_name, pretrained, output_layer_bkbn, freeze_backbone
)
# Initialize mixing blocks:
self._first_mix = MixingMaskAttentionBlock(6, 3, [3, 10, 5], [10, 5, 1])
self._mixing_mask = ModuleList(
[
MixingMaskAttentionBlock(48, 24, [24, 12, 6], [12, 6, 1]),
MixingMaskAttentionBlock(64, 32, [32, 16, 8], [16, 8, 1]),
MixingBlock(112, 56),
]
)
# Initialize Upsampling blocks:
self._up = ModuleList(
[
UpMask(2, 56, 64),
UpMask(2, 64, 64),
UpMask(2, 64, 32),
]
)
# Final classification layer:
self._classify = PixelwiseLinear([32, 16], [16, 1], None) # out_channels = 8
def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
features = self._encode(x1, x2)
latents = self._decode(features)
out = self._classify(latents)
return (out,)
def _encode(self, ref, test) -> List[Tensor]:
features = [self._first_mix(ref, test)]
for num, layer in enumerate(self._backbone):
ref, test = layer(ref), layer(test)
if num != 0:
features.append(self._mixing_mask[num - 1](ref, test))
return features
def _decode(self, features) -> Tensor:
upping = features[-1]
for i, j in enumerate(range(-2, -5, -1)):
upping = self._up[i](upping, features[j])
return upping