KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule, ModuleList, Sequential
from torch import Tensor
class DAPPM(BaseModule):
"""DAPPM module in `DDRNet <https://arxiv.org/abs/2101.06085>`_.
Args:
in_channels (int): Input channels.
branch_channels (int): Branch channels.
out_channels (int): Output channels.
num_scales (int): Number of scales.
kernel_sizes (list[int]): Kernel sizes of each scale.
strides (list[int]): Strides of each scale.
paddings (list[int]): Paddings of each scale.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU', inplace=True).
conv_cfg (dict): Config dict for convolution layer in ConvModule.
Default: dict(order=('norm', 'act', 'conv'), bias=False).
upsample_mode (str): Upsample mode. Default: 'bilinear'.
"""
def __init__(self,
in_channels: int,
branch_channels: int,
out_channels: int,
num_scales: int,
kernel_sizes: List[int] = [5, 9, 17],
strides: List[int] = [2, 4, 8],
paddings: List[int] = [2, 4, 8],
norm_cfg: Dict = dict(type='BN', momentum=0.1),
act_cfg: Dict = dict(type='ReLU', inplace=True),
conv_cfg: Dict = dict(
order=('norm', 'act', 'conv'), bias=False),
upsample_mode: str = 'bilinear'):
super().__init__()
self.num_scales = num_scales
self.unsample_mode = upsample_mode
self.in_channels = in_channels
self.branch_channels = branch_channels
self.out_channels = out_channels
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.conv_cfg = conv_cfg
self.scales = ModuleList([
ConvModule(
in_channels,
branch_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**conv_cfg)
])
for i in range(1, num_scales - 1):
self.scales.append(
Sequential(*[
nn.AvgPool2d(
kernel_size=kernel_sizes[i - 1],
stride=strides[i - 1],
padding=paddings[i - 1]),
ConvModule(
in_channels,
branch_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**conv_cfg)
]))
self.scales.append(
Sequential(*[
nn.AdaptiveAvgPool2d((1, 1)),
ConvModule(
in_channels,
branch_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**conv_cfg)
]))
self.processes = ModuleList()
for i in range(num_scales - 1):
self.processes.append(
ConvModule(
branch_channels,
branch_channels,
kernel_size=3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**conv_cfg))
self.compression = ConvModule(
branch_channels * num_scales,
out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**conv_cfg)
self.shortcut = ConvModule(
in_channels,
out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**conv_cfg)
def forward(self, inputs: Tensor):
feats = []
feats.append(self.scales[0](inputs))
for i in range(1, self.num_scales):
feat_up = F.interpolate(
self.scales[i](inputs),
size=inputs.shape[2:],
mode=self.unsample_mode)
feats.append(self.processes[i - 1](feat_up + feats[i - 1]))
return self.compression(torch.cat(feats,
dim=1)) + self.shortcut(inputs)
class PAPPM(DAPPM):
"""PAPPM module in `PIDNet <https://arxiv.org/abs/2206.02066>`_.
Args:
in_channels (int): Input channels.
branch_channels (int): Branch channels.
out_channels (int): Output channels.
num_scales (int): Number of scales.
kernel_sizes (list[int]): Kernel sizes of each scale.
strides (list[int]): Strides of each scale.
paddings (list[int]): Paddings of each scale.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN', momentum=0.1).
act_cfg (dict): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU', inplace=True).
conv_cfg (dict): Config dict for convolution layer in ConvModule.
Default: dict(order=('norm', 'act', 'conv'), bias=False).
upsample_mode (str): Upsample mode. Default: 'bilinear'.
"""
def __init__(self,
in_channels: int,
branch_channels: int,
out_channels: int,
num_scales: int,
kernel_sizes: List[int] = [5, 9, 17],
strides: List[int] = [2, 4, 8],
paddings: List[int] = [2, 4, 8],
norm_cfg: Dict = dict(type='BN', momentum=0.1),
act_cfg: Dict = dict(type='ReLU', inplace=True),
conv_cfg: Dict = dict(
order=('norm', 'act', 'conv'), bias=False),
upsample_mode: str = 'bilinear'):
super().__init__(in_channels, branch_channels, out_channels,
num_scales, kernel_sizes, strides, paddings, norm_cfg,
act_cfg, conv_cfg, upsample_mode)
self.processes = ConvModule(
self.branch_channels * (self.num_scales - 1),
self.branch_channels * (self.num_scales - 1),
kernel_size=3,
padding=1,
groups=self.num_scales - 1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
**self.conv_cfg)
def forward(self, inputs: Tensor):
x_ = self.scales[0](inputs)
feats = []
for i in range(1, self.num_scales):
feat_up = F.interpolate(
self.scales[i](inputs),
size=inputs.shape[2:],
mode=self.unsample_mode,
align_corners=False)
feats.append(feat_up + x_)
scale_out = self.processes(torch.cat(feats, dim=1))
return self.compression(torch.cat([x_, scale_out],
dim=1)) + self.shortcut(inputs)