Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, build_norm_layer | |
from mmseg.registry import MODELS | |
class MLAModule(nn.Module): | |
def __init__(self, | |
in_channels=[1024, 1024, 1024, 1024], | |
out_channels=256, | |
norm_cfg=None, | |
act_cfg=None): | |
super().__init__() | |
self.channel_proj = nn.ModuleList() | |
for i in range(len(in_channels)): | |
self.channel_proj.append( | |
ConvModule( | |
in_channels=in_channels[i], | |
out_channels=out_channels, | |
kernel_size=1, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg)) | |
self.feat_extract = nn.ModuleList() | |
for i in range(len(in_channels)): | |
self.feat_extract.append( | |
ConvModule( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
padding=1, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg)) | |
def forward(self, inputs): | |
# feat_list -> [p2, p3, p4, p5] | |
feat_list = [] | |
for x, conv in zip(inputs, self.channel_proj): | |
feat_list.append(conv(x)) | |
# feat_list -> [p5, p4, p3, p2] | |
# mid_list -> [m5, m4, m3, m2] | |
feat_list = feat_list[::-1] | |
mid_list = [] | |
for feat in feat_list: | |
if len(mid_list) == 0: | |
mid_list.append(feat) | |
else: | |
mid_list.append(mid_list[-1] + feat) | |
# mid_list -> [m5, m4, m3, m2] | |
# out_list -> [o2, o3, o4, o5] | |
out_list = [] | |
for mid, conv in zip(mid_list, self.feat_extract): | |
out_list.append(conv(mid)) | |
return tuple(out_list) | |
class MLANeck(nn.Module): | |
"""Multi-level Feature Aggregation. | |
This neck is `The Multi-level Feature Aggregation construction of | |
SETR <https://arxiv.org/abs/2012.15840>`_. | |
Args: | |
in_channels (List[int]): Number of input channels per scale. | |
out_channels (int): Number of output channels (used at each scale). | |
norm_layer (dict): Config dict for input normalization. | |
Default: norm_layer=dict(type='LN', eps=1e-6, requires_grad=True). | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (dict): Config dict for activation layer in ConvModule. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
norm_layer=dict(type='LN', eps=1e-6, requires_grad=True), | |
norm_cfg=None, | |
act_cfg=None): | |
super().__init__() | |
assert isinstance(in_channels, list) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
# In order to build general vision transformer backbone, we have to | |
# move MLA to neck. | |
self.norm = nn.ModuleList([ | |
build_norm_layer(norm_layer, in_channels[i])[1] | |
for i in range(len(in_channels)) | |
]) | |
self.mla = MLAModule( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
def forward(self, inputs): | |
assert len(inputs) == len(self.in_channels) | |
# Convert from nchw to nlc | |
outs = [] | |
for i in range(len(inputs)): | |
x = inputs[i] | |
n, c, h, w = x.shape | |
x = x.reshape(n, c, h * w).transpose(2, 1).contiguous() | |
x = self.norm[i](x) | |
x = x.transpose(1, 2).reshape(n, c, h, w).contiguous() | |
outs.append(x) | |
outs = self.mla(outs) | |
return tuple(outs) | |