TTP / mmseg /models /necks /mla_neck.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule, build_norm_layer
from mmseg.registry import MODELS
class MLAModule(nn.Module):
def __init__(self,
in_channels=[1024, 1024, 1024, 1024],
out_channels=256,
norm_cfg=None,
act_cfg=None):
super().__init__()
self.channel_proj = nn.ModuleList()
for i in range(len(in_channels)):
self.channel_proj.append(
ConvModule(
in_channels=in_channels[i],
out_channels=out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.feat_extract = nn.ModuleList()
for i in range(len(in_channels)):
self.feat_extract.append(
ConvModule(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, inputs):
# feat_list -> [p2, p3, p4, p5]
feat_list = []
for x, conv in zip(inputs, self.channel_proj):
feat_list.append(conv(x))
# feat_list -> [p5, p4, p3, p2]
# mid_list -> [m5, m4, m3, m2]
feat_list = feat_list[::-1]
mid_list = []
for feat in feat_list:
if len(mid_list) == 0:
mid_list.append(feat)
else:
mid_list.append(mid_list[-1] + feat)
# mid_list -> [m5, m4, m3, m2]
# out_list -> [o2, o3, o4, o5]
out_list = []
for mid, conv in zip(mid_list, self.feat_extract):
out_list.append(conv(mid))
return tuple(out_list)
@MODELS.register_module()
class MLANeck(nn.Module):
"""Multi-level Feature Aggregation.
This neck is `The Multi-level Feature Aggregation construction of
SETR <https://arxiv.org/abs/2012.15840>`_.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale).
norm_layer (dict): Config dict for input normalization.
Default: norm_layer=dict(type='LN', eps=1e-6, requires_grad=True).
norm_cfg (dict): Config dict for normalization layer. Default: None.
act_cfg (dict): Config dict for activation layer in ConvModule.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
norm_layer=dict(type='LN', eps=1e-6, requires_grad=True),
norm_cfg=None,
act_cfg=None):
super().__init__()
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
# In order to build general vision transformer backbone, we have to
# move MLA to neck.
self.norm = nn.ModuleList([
build_norm_layer(norm_layer, in_channels[i])[1]
for i in range(len(in_channels))
])
self.mla = MLAModule(
in_channels=in_channels,
out_channels=out_channels,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, inputs):
assert len(inputs) == len(self.in_channels)
# Convert from nchw to nlc
outs = []
for i in range(len(inputs)):
x = inputs[i]
n, c, h, w = x.shape
x = x.reshape(n, c, h * w).transpose(2, 1).contiguous()
x = self.norm[i](x)
x = x.transpose(1, 2).reshape(n, c, h, w).contiguous()
outs.append(x)
outs = self.mla(outs)
return tuple(outs)