Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Originally from https://github.com/visual-attention-network/segnext | |
# Licensed under the Apache License, Version 2.0 (the "License") | |
import math | |
import warnings | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import build_activation_layer, build_norm_layer | |
from mmcv.cnn.bricks import DropPath | |
from mmengine.model import BaseModule | |
from mmengine.model.weight_init import (constant_init, normal_init, | |
trunc_normal_init) | |
from mmseg.registry import MODELS | |
class Mlp(BaseModule): | |
"""Multi Layer Perceptron (MLP) Module. | |
Args: | |
in_features (int): The dimension of input features. | |
hidden_features (int): The dimension of hidden features. | |
Defaults: None. | |
out_features (int): The dimension of output features. | |
Defaults: None. | |
act_cfg (dict): Config dict for activation layer in block. | |
Default: dict(type='GELU'). | |
drop (float): The number of dropout rate in MLP block. | |
Defaults: 0.0. | |
""" | |
def __init__(self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_cfg=dict(type='GELU'), | |
drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Conv2d(in_features, hidden_features, 1) | |
self.dwconv = nn.Conv2d( | |
hidden_features, | |
hidden_features, | |
3, | |
1, | |
1, | |
bias=True, | |
groups=hidden_features) | |
self.act = build_activation_layer(act_cfg) | |
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
"""Forward function.""" | |
x = self.fc1(x) | |
x = self.dwconv(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class StemConv(BaseModule): | |
"""Stem Block at the beginning of Semantic Branch. | |
Args: | |
in_channels (int): The dimension of input channels. | |
out_channels (int): The dimension of output channels. | |
act_cfg (dict): Config dict for activation layer in block. | |
Default: dict(type='GELU'). | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults: dict(type='SyncBN', requires_grad=True). | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='SyncBN', requires_grad=True)): | |
super().__init__() | |
self.proj = nn.Sequential( | |
nn.Conv2d( | |
in_channels, | |
out_channels // 2, | |
kernel_size=(3, 3), | |
stride=(2, 2), | |
padding=(1, 1)), | |
build_norm_layer(norm_cfg, out_channels // 2)[1], | |
build_activation_layer(act_cfg), | |
nn.Conv2d( | |
out_channels // 2, | |
out_channels, | |
kernel_size=(3, 3), | |
stride=(2, 2), | |
padding=(1, 1)), | |
build_norm_layer(norm_cfg, out_channels)[1], | |
) | |
def forward(self, x): | |
"""Forward function.""" | |
x = self.proj(x) | |
_, _, H, W = x.size() | |
x = x.flatten(2).transpose(1, 2) | |
return x, H, W | |
class MSCAAttention(BaseModule): | |
"""Attention Module in Multi-Scale Convolutional Attention Module (MSCA). | |
Args: | |
channels (int): The dimension of channels. | |
kernel_sizes (list): The size of attention | |
kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]]. | |
paddings (list): The number of | |
corresponding padding value in attention module. | |
Defaults: [2, [0, 3], [0, 5], [0, 10]]. | |
""" | |
def __init__(self, | |
channels, | |
kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], | |
paddings=[2, [0, 3], [0, 5], [0, 10]]): | |
super().__init__() | |
self.conv0 = nn.Conv2d( | |
channels, | |
channels, | |
kernel_size=kernel_sizes[0], | |
padding=paddings[0], | |
groups=channels) | |
for i, (kernel_size, | |
padding) in enumerate(zip(kernel_sizes[1:], paddings[1:])): | |
kernel_size_ = [kernel_size, kernel_size[::-1]] | |
padding_ = [padding, padding[::-1]] | |
conv_name = [f'conv{i}_1', f'conv{i}_2'] | |
for i_kernel, i_pad, i_conv in zip(kernel_size_, padding_, | |
conv_name): | |
self.add_module( | |
i_conv, | |
nn.Conv2d( | |
channels, | |
channels, | |
tuple(i_kernel), | |
padding=i_pad, | |
groups=channels)) | |
self.conv3 = nn.Conv2d(channels, channels, 1) | |
def forward(self, x): | |
"""Forward function.""" | |
u = x.clone() | |
attn = self.conv0(x) | |
# Multi-Scale Feature extraction | |
attn_0 = self.conv0_1(attn) | |
attn_0 = self.conv0_2(attn_0) | |
attn_1 = self.conv1_1(attn) | |
attn_1 = self.conv1_2(attn_1) | |
attn_2 = self.conv2_1(attn) | |
attn_2 = self.conv2_2(attn_2) | |
attn = attn + attn_0 + attn_1 + attn_2 | |
# Channel Mixing | |
attn = self.conv3(attn) | |
# Convolutional Attention | |
x = attn * u | |
return x | |
class MSCASpatialAttention(BaseModule): | |
"""Spatial Attention Module in Multi-Scale Convolutional Attention Module | |
(MSCA). | |
Args: | |
in_channels (int): The dimension of channels. | |
attention_kernel_sizes (list): The size of attention | |
kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]]. | |
attention_kernel_paddings (list): The number of | |
corresponding padding value in attention module. | |
Defaults: [2, [0, 3], [0, 5], [0, 10]]. | |
act_cfg (dict): Config dict for activation layer in block. | |
Default: dict(type='GELU'). | |
""" | |
def __init__(self, | |
in_channels, | |
attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], | |
attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]], | |
act_cfg=dict(type='GELU')): | |
super().__init__() | |
self.proj_1 = nn.Conv2d(in_channels, in_channels, 1) | |
self.activation = build_activation_layer(act_cfg) | |
self.spatial_gating_unit = MSCAAttention(in_channels, | |
attention_kernel_sizes, | |
attention_kernel_paddings) | |
self.proj_2 = nn.Conv2d(in_channels, in_channels, 1) | |
def forward(self, x): | |
"""Forward function.""" | |
shorcut = x.clone() | |
x = self.proj_1(x) | |
x = self.activation(x) | |
x = self.spatial_gating_unit(x) | |
x = self.proj_2(x) | |
x = x + shorcut | |
return x | |
class MSCABlock(BaseModule): | |
"""Basic Multi-Scale Convolutional Attention Block. It leverage the large- | |
kernel attention (LKA) mechanism to build both channel and spatial | |
attention. In each branch, it uses two depth-wise strip convolutions to | |
approximate standard depth-wise convolutions with large kernels. The kernel | |
size for each branch is set to 7, 11, and 21, respectively. | |
Args: | |
channels (int): The dimension of channels. | |
attention_kernel_sizes (list): The size of attention | |
kernel. Defaults: [5, [1, 7], [1, 11], [1, 21]]. | |
attention_kernel_paddings (list): The number of | |
corresponding padding value in attention module. | |
Defaults: [2, [0, 3], [0, 5], [0, 10]]. | |
mlp_ratio (float): The ratio of multiple input dimension to | |
calculate hidden feature in MLP layer. Defaults: 4.0. | |
drop (float): The number of dropout rate in MLP block. | |
Defaults: 0.0. | |
drop_path (float): The ratio of drop paths. | |
Defaults: 0.0. | |
act_cfg (dict): Config dict for activation layer in block. | |
Default: dict(type='GELU'). | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults: dict(type='SyncBN', requires_grad=True). | |
""" | |
def __init__(self, | |
channels, | |
attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], | |
attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]], | |
mlp_ratio=4., | |
drop=0., | |
drop_path=0., | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='SyncBN', requires_grad=True)): | |
super().__init__() | |
self.norm1 = build_norm_layer(norm_cfg, channels)[1] | |
self.attn = MSCASpatialAttention(channels, attention_kernel_sizes, | |
attention_kernel_paddings, act_cfg) | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = build_norm_layer(norm_cfg, channels)[1] | |
mlp_hidden_channels = int(channels * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=channels, | |
hidden_features=mlp_hidden_channels, | |
act_cfg=act_cfg, | |
drop=drop) | |
layer_scale_init_value = 1e-2 | |
self.layer_scale_1 = nn.Parameter( | |
layer_scale_init_value * torch.ones(channels), requires_grad=True) | |
self.layer_scale_2 = nn.Parameter( | |
layer_scale_init_value * torch.ones(channels), requires_grad=True) | |
def forward(self, x, H, W): | |
"""Forward function.""" | |
B, N, C = x.shape | |
x = x.permute(0, 2, 1).view(B, C, H, W) | |
x = x + self.drop_path( | |
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * | |
self.attn(self.norm1(x))) | |
x = x + self.drop_path( | |
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * | |
self.mlp(self.norm2(x))) | |
x = x.view(B, C, N).permute(0, 2, 1) | |
return x | |
class OverlapPatchEmbed(BaseModule): | |
"""Image to Patch Embedding. | |
Args: | |
patch_size (int): The patch size. | |
Defaults: 7. | |
stride (int): Stride of the convolutional layer. | |
Default: 4. | |
in_channels (int): The number of input channels. | |
Defaults: 3. | |
embed_dims (int): The dimensions of embedding. | |
Defaults: 768. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults: dict(type='SyncBN', requires_grad=True). | |
""" | |
def __init__(self, | |
patch_size=7, | |
stride=4, | |
in_channels=3, | |
embed_dim=768, | |
norm_cfg=dict(type='SyncBN', requires_grad=True)): | |
super().__init__() | |
self.proj = nn.Conv2d( | |
in_channels, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=stride, | |
padding=patch_size // 2) | |
self.norm = build_norm_layer(norm_cfg, embed_dim)[1] | |
def forward(self, x): | |
"""Forward function.""" | |
x = self.proj(x) | |
_, _, H, W = x.shape | |
x = self.norm(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x, H, W | |
class MSCAN(BaseModule): | |
"""SegNeXt Multi-Scale Convolutional Attention Network (MCSAN) backbone. | |
This backbone is the implementation of `SegNeXt: Rethinking | |
Convolutional Attention Design for Semantic | |
Segmentation <https://arxiv.org/abs/2209.08575>`_. | |
Inspiration from https://github.com/visual-attention-network/segnext. | |
Args: | |
in_channels (int): The number of input channels. Defaults: 3. | |
embed_dims (list[int]): Embedding dimension. | |
Defaults: [64, 128, 256, 512]. | |
mlp_ratios (list[int]): Ratio of mlp hidden dim to embedding dim. | |
Defaults: [4, 4, 4, 4]. | |
drop_rate (float): Dropout rate. Defaults: 0. | |
drop_path_rate (float): Stochastic depth rate. Defaults: 0. | |
depths (list[int]): Depths of each Swin Transformer stage. | |
Default: [3, 4, 6, 3]. | |
num_stages (int): MSCAN stages. Default: 4. | |
attention_kernel_sizes (list): Size of attention kernel in | |
Attention Module (Figure 2(b) of original paper). | |
Defaults: [5, [1, 7], [1, 11], [1, 21]]. | |
attention_kernel_paddings (list): Size of attention paddings | |
in Attention Module (Figure 2(b) of original paper). | |
Defaults: [2, [0, 3], [0, 5], [0, 10]]. | |
norm_cfg (dict): Config of norm layers. | |
Defaults: dict(type='SyncBN', requires_grad=True). | |
pretrained (str, optional): model pretrained path. | |
Default: None. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels=3, | |
embed_dims=[64, 128, 256, 512], | |
mlp_ratios=[4, 4, 4, 4], | |
drop_rate=0., | |
drop_path_rate=0., | |
depths=[3, 4, 6, 3], | |
num_stages=4, | |
attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], | |
attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]], | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='SyncBN', requires_grad=True), | |
pretrained=None, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
assert not (init_cfg and pretrained), \ | |
'init_cfg and pretrained cannot be set at the same time' | |
if isinstance(pretrained, str): | |
warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
'please use "init_cfg" instead') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
elif pretrained is not None: | |
raise TypeError('pretrained must be a str or None') | |
self.depths = depths | |
self.num_stages = num_stages | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
cur = 0 | |
for i in range(num_stages): | |
if i == 0: | |
patch_embed = StemConv(3, embed_dims[0], norm_cfg=norm_cfg) | |
else: | |
patch_embed = OverlapPatchEmbed( | |
patch_size=7 if i == 0 else 3, | |
stride=4 if i == 0 else 2, | |
in_channels=in_channels if i == 0 else embed_dims[i - 1], | |
embed_dim=embed_dims[i], | |
norm_cfg=norm_cfg) | |
block = nn.ModuleList([ | |
MSCABlock( | |
channels=embed_dims[i], | |
attention_kernel_sizes=attention_kernel_sizes, | |
attention_kernel_paddings=attention_kernel_paddings, | |
mlp_ratio=mlp_ratios[i], | |
drop=drop_rate, | |
drop_path=dpr[cur + j], | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg) for j in range(depths[i]) | |
]) | |
norm = nn.LayerNorm(embed_dims[i]) | |
cur += depths[i] | |
setattr(self, f'patch_embed{i + 1}', patch_embed) | |
setattr(self, f'block{i + 1}', block) | |
setattr(self, f'norm{i + 1}', norm) | |
def init_weights(self): | |
"""Initialize modules of MSCAN.""" | |
print('init cfg', self.init_cfg) | |
if self.init_cfg is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
trunc_normal_init(m, std=.02, bias=0.) | |
elif isinstance(m, nn.LayerNorm): | |
constant_init(m, val=1.0, bias=0.) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[ | |
1] * m.out_channels | |
fan_out //= m.groups | |
normal_init( | |
m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0) | |
else: | |
super().init_weights() | |
def forward(self, x): | |
"""Forward function.""" | |
B = x.shape[0] | |
outs = [] | |
for i in range(self.num_stages): | |
patch_embed = getattr(self, f'patch_embed{i + 1}') | |
block = getattr(self, f'block{i + 1}') | |
norm = getattr(self, f'norm{i + 1}') | |
x, H, W = patch_embed(x) | |
for blk in block: | |
x = blk(x, H, W) | |
x = norm(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
return outs | |