Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
from typing import List | |
import mmengine.fileio as fileio | |
from mmseg.registry import DATASETS | |
from .basesegdataset import BaseSegDataset | |
class NYUDataset(BaseSegDataset): | |
"""NYU depth estimation dataset. The file structure should be. | |
.. code-block:: none | |
βββ data | |
β βββ nyu | |
β β βββ images | |
β β β βββ train | |
β β β β βββ scene_xxx.jpg | |
β β β β βββ ... | |
β β β βββ test | |
β β βββ annotations | |
β β β βββ train | |
β β β β βββ scene_xxx.png | |
β β β β βββ ... | |
β β β βββ test | |
Args: | |
ann_file (str): Annotation file path. Defaults to ''. | |
metainfo (dict, optional): Meta information for dataset, such as | |
specify classes to load. Defaults to None. | |
data_root (str, optional): The root directory for ``data_prefix`` and | |
``ann_file``. Defaults to None. | |
data_prefix (dict, optional): Prefix for training data. Defaults to | |
dict(img_path='images', depth_map_path='annotations'). | |
img_suffix (str): Suffix of images. Default: '.jpg' | |
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' | |
filter_cfg (dict, optional): Config for filter data. Defaults to None. | |
indices (int or Sequence[int], optional): Support using first few | |
data in annotation file to facilitate training/testing on a smaller | |
dataset. Defaults to None which means using all ``data_infos``. | |
serialize_data (bool, optional): Whether to hold memory using | |
serialized objects, when enabled, data loader workers can use | |
shared RAM from master process instead of making a copy. Defaults | |
to True. | |
pipeline (list, optional): Processing pipeline. Defaults to []. | |
test_mode (bool, optional): ``test_mode=True`` means in test phase. | |
Defaults to False. | |
lazy_init (bool, optional): Whether to load annotation during | |
instantiation. In some cases, such as visualization, only the meta | |
information of the dataset is needed, which is not necessary to | |
load annotation file. ``Basedataset`` can skip load annotations to | |
save time by set ``lazy_init=True``. Defaults to False. | |
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a | |
None img. The maximum extra number of cycles to get a valid | |
image. Defaults to 1000. | |
ignore_index (int): The label index to be ignored. Default: 255 | |
reduce_zero_label (bool): Whether to mark label zero as ignored. | |
Default to False. | |
backend_args (dict, Optional): Arguments to instantiate a file backend. | |
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm | |
for details. Defaults to None. | |
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required. | |
""" | |
METAINFO = dict( | |
classes=('printer_room', 'bathroom', 'living_room', 'study', | |
'conference_room', 'study_room', 'kitchen', 'home_office', | |
'bedroom', 'dinette', 'playroom', 'indoor_balcony', | |
'laundry_room', 'basement', 'excercise_room', 'foyer', | |
'home_storage', 'cafe', 'furniture_store', 'office_kitchen', | |
'student_lounge', 'dining_room', 'reception_room', | |
'computer_lab', 'classroom', 'office', 'bookstore')) | |
def __init__(self, | |
data_prefix=dict( | |
img_path='images', depth_map_path='annotations'), | |
img_suffix='.jpg', | |
depth_map_suffix='.png', | |
**kwargs) -> None: | |
super().__init__( | |
data_prefix=data_prefix, | |
img_suffix=img_suffix, | |
seg_map_suffix=depth_map_suffix, | |
**kwargs) | |
def _get_category_id_from_filename(self, image_fname: str) -> int: | |
"""Retrieve the category ID from the given image filename.""" | |
image_fname = osp.basename(image_fname) | |
position = image_fname.find(next(filter(str.isdigit, image_fname)), 0) | |
categoty_name = image_fname[:position - 1] | |
if categoty_name not in self._metainfo['classes']: | |
return -1 | |
else: | |
return self._metainfo['classes'].index(categoty_name) | |
def load_data_list(self) -> List[dict]: | |
"""Load annotation from directory or annotation file. | |
Returns: | |
list[dict]: All data info of dataset. | |
""" | |
data_list = [] | |
img_dir = self.data_prefix.get('img_path', None) | |
ann_dir = self.data_prefix.get('depth_map_path', None) | |
_suffix_len = len(self.img_suffix) | |
for img in fileio.list_dir_or_file( | |
dir_path=img_dir, | |
list_dir=False, | |
suffix=self.img_suffix, | |
recursive=True, | |
backend_args=self.backend_args): | |
data_info = dict(img_path=osp.join(img_dir, img)) | |
if ann_dir is not None: | |
depth_map = img[:-_suffix_len] + self.seg_map_suffix | |
data_info['depth_map_path'] = osp.join(ann_dir, depth_map) | |
data_info['seg_fields'] = [] | |
data_info['category_id'] = self._get_category_id_from_filename(img) | |
data_list.append(data_info) | |
data_list = sorted(data_list, key=lambda x: x['img_path']) | |
return data_list | |