Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmengine.model import BaseModule | |
from mmengine.utils import is_tuple_of | |
from .make_divisible import make_divisible | |
class SELayer(BaseModule): | |
"""Squeeze-and-Excitation Module. | |
Args: | |
channels (int): The input (and output) channels of the SE layer. | |
squeeze_channels (None or int): The intermediate channel number of | |
SElayer. Default: None, means the value of ``squeeze_channels`` | |
is ``make_divisible(channels // ratio, divisor)``. | |
ratio (int): Squeeze ratio in SELayer, the intermediate channel will | |
be ``make_divisible(channels // ratio, divisor)``. Only used when | |
``squeeze_channels`` is None. Default: 16. | |
divisor(int): The divisor to true divide the channel number. Only | |
used when ``squeeze_channels`` is None. Default: 8. | |
conv_cfg (None or dict): Config dict for convolution layer. Default: | |
None, which means using conv2d. | |
return_weight(bool): Whether to return the weight. Default: False. | |
act_cfg (dict or Sequence[dict]): Config dict for activation layer. | |
If act_cfg is a dict, two activation layers will be configurated | |
by this dict. If act_cfg is a sequence of dicts, the first | |
activation layer will be configurated by the first dict and the | |
second activation layer will be configurated by the second dict. | |
Default: (dict(type='ReLU'), dict(type='Sigmoid')) | |
""" | |
def __init__(self, | |
channels, | |
squeeze_channels=None, | |
ratio=16, | |
divisor=8, | |
bias='auto', | |
conv_cfg=None, | |
act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')), | |
return_weight=False, | |
init_cfg=None): | |
super(SELayer, self).__init__(init_cfg) | |
if isinstance(act_cfg, dict): | |
act_cfg = (act_cfg, act_cfg) | |
assert len(act_cfg) == 2 | |
assert is_tuple_of(act_cfg, dict) | |
self.global_avgpool = nn.AdaptiveAvgPool2d(1) | |
if squeeze_channels is None: | |
squeeze_channels = make_divisible(channels // ratio, divisor) | |
assert isinstance(squeeze_channels, int) and squeeze_channels > 0, \ | |
'"squeeze_channels" should be a positive integer, but get ' + \ | |
f'{squeeze_channels} instead.' | |
self.return_weight = return_weight | |
self.conv1 = ConvModule( | |
in_channels=channels, | |
out_channels=squeeze_channels, | |
kernel_size=1, | |
stride=1, | |
bias=bias, | |
conv_cfg=conv_cfg, | |
act_cfg=act_cfg[0]) | |
self.conv2 = ConvModule( | |
in_channels=squeeze_channels, | |
out_channels=channels, | |
kernel_size=1, | |
stride=1, | |
bias=bias, | |
conv_cfg=conv_cfg, | |
act_cfg=act_cfg[1]) | |
def forward(self, x): | |
out = self.global_avgpool(x) | |
out = self.conv1(out) | |
out = self.conv2(out) | |
if self.return_weight: | |
return out | |
else: | |
return x * out | |