TTP / mmpretrain /models /utils /se_layer.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmengine.utils import is_tuple_of
from .make_divisible import make_divisible
class SELayer(BaseModule):
"""Squeeze-and-Excitation Module.
Args:
channels (int): The input (and output) channels of the SE layer.
squeeze_channels (None or int): The intermediate channel number of
SElayer. Default: None, means the value of ``squeeze_channels``
is ``make_divisible(channels // ratio, divisor)``.
ratio (int): Squeeze ratio in SELayer, the intermediate channel will
be ``make_divisible(channels // ratio, divisor)``. Only used when
``squeeze_channels`` is None. Default: 16.
divisor(int): The divisor to true divide the channel number. Only
used when ``squeeze_channels`` is None. Default: 8.
conv_cfg (None or dict): Config dict for convolution layer. Default:
None, which means using conv2d.
return_weight(bool): Whether to return the weight. Default: False.
act_cfg (dict or Sequence[dict]): Config dict for activation layer.
If act_cfg is a dict, two activation layers will be configurated
by this dict. If act_cfg is a sequence of dicts, the first
activation layer will be configurated by the first dict and the
second activation layer will be configurated by the second dict.
Default: (dict(type='ReLU'), dict(type='Sigmoid'))
"""
def __init__(self,
channels,
squeeze_channels=None,
ratio=16,
divisor=8,
bias='auto',
conv_cfg=None,
act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')),
return_weight=False,
init_cfg=None):
super(SELayer, self).__init__(init_cfg)
if isinstance(act_cfg, dict):
act_cfg = (act_cfg, act_cfg)
assert len(act_cfg) == 2
assert is_tuple_of(act_cfg, dict)
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
if squeeze_channels is None:
squeeze_channels = make_divisible(channels // ratio, divisor)
assert isinstance(squeeze_channels, int) and squeeze_channels > 0, \
'"squeeze_channels" should be a positive integer, but get ' + \
f'{squeeze_channels} instead.'
self.return_weight = return_weight
self.conv1 = ConvModule(
in_channels=channels,
out_channels=squeeze_channels,
kernel_size=1,
stride=1,
bias=bias,
conv_cfg=conv_cfg,
act_cfg=act_cfg[0])
self.conv2 = ConvModule(
in_channels=squeeze_channels,
out_channels=channels,
kernel_size=1,
stride=1,
bias=bias,
conv_cfg=conv_cfg,
act_cfg=act_cfg[1])
def forward(self, x):
out = self.global_avgpool(x)
out = self.conv1(out)
out = self.conv2(out)
if self.return_weight:
return out
else:
return x * out