Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Union | |
import torch | |
from torch import nn | |
from mmpretrain.registry import MODELS | |
from ..backbones.vision_transformer import TransformerEncoderLayer | |
from ..utils import PromptMultiheadAttention | |
from .mae_neck import MAEPretrainDecoder | |
class PromptTransformerEncoderLayer(TransformerEncoderLayer): | |
"""Prompt Transformer Encoder Layer for MILAN. | |
This module is specific for the prompt encoder in MILAN. It will not update | |
the visible tokens from the encoder. | |
Args: | |
embed_dims (int): The feature dimension. | |
num_heads (int): Parallel attention heads. | |
feedforward_channels (int): The hidden dimension for FFNs. | |
drop_rate (float): Probability of an element to be zeroed | |
after the feed forward layer. Defaults to 0.0. | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Defaults to 0.0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0.0. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Defaults to 2. | |
qkv_bias (bool): Enable bias for qkv if True. Defaults to True. | |
act_cfg (dict): The activation config for FFNs. | |
Defaults to ``dict(type='GELU')``. | |
norm_cfg (dict): Config dict for normalization layer. | |
Defaults to ``dict(type='LN')``. | |
batch_first (bool): Key, Query and Value are shape of | |
(batch, n, embed_dim) | |
or (n, batch, embed_dim). Defaults to False. | |
init_cfg (dict, optional): The Config for initialization. | |
Defaults to None. | |
""" | |
def __init__(self, | |
embed_dims: int, | |
num_heads: int, | |
feedforward_channels=int, | |
drop_rate: float = 0., | |
attn_drop_rate: float = 0., | |
drop_path_rate: float = 0., | |
num_fcs: int = 2, | |
qkv_bias: bool = True, | |
act_cfg: dict = dict(type='GELU'), | |
norm_cfg: dict = dict(type='LN'), | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
feedforward_channels=feedforward_channels, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
num_fcs=num_fcs, | |
qkv_bias=qkv_bias, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
init_cfg=init_cfg) | |
self.attn = PromptMultiheadAttention( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
attn_drop=attn_drop_rate, | |
proj_drop=drop_rate, | |
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), | |
qkv_bias=qkv_bias) | |
def forward(self, x: torch.Tensor, visible_tokens: torch.Tensor, | |
ids_restore: torch.Tensor) -> torch.Tensor: | |
"""Forward function for `PromptMultiheadAttention`. | |
Args: | |
x (torch.Tensor): Mask token features with shape N x L_m x C. | |
visible_tokens (torch.Tensor): The visible tokens features from | |
encoder with shape N x L_v x C. | |
ids_restore (torch.Tensor): The ids of all tokens in the original | |
image with shape N x L. | |
Returns: | |
torch Tensor: Output features with shape N x L x C. | |
""" | |
x = x + self.attn(self.norm1(x), visible_tokens, ids_restore) | |
x = self.ffn(self.norm2(x), identity=x) | |
return x | |
class MILANPretrainDecoder(MAEPretrainDecoder): | |
"""Prompt decoder for MILAN. | |
This decoder is used in MILAN pretraining, which will not update these | |
visible tokens from the encoder. | |
Args: | |
num_patches (int): The number of total patches. Defaults to 196. | |
patch_size (int): Image patch size. Defaults to 16. | |
in_chans (int): The channel of input image. Defaults to 3. | |
embed_dim (int): Encoder's embedding dimension. Defaults to 1024. | |
decoder_embed_dim (int): Decoder's embedding dimension. | |
Defaults to 512. | |
decoder_depth (int): The depth of decoder. Defaults to 8. | |
decoder_num_heads (int): Number of attention heads of decoder. | |
Defaults to 16. | |
predict_feature_dim (int): The dimension of the feature to be | |
predicted. Defaults to 512. | |
mlp_ratio (int): Ratio of mlp hidden dim to decoder's embedding dim. | |
Defaults to 4. | |
norm_cfg (dict): Normalization layer. Defaults to LayerNorm. | |
init_cfg (Union[List[dict], dict], optional): Initialization config | |
dict. Defaults to None. | |
""" | |
def __init__(self, | |
num_patches: int = 196, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 1024, | |
decoder_embed_dim: int = 512, | |
decoder_depth: int = 8, | |
decoder_num_heads: int = 16, | |
predict_feature_dim: int = 512, | |
mlp_ratio: int = 4, | |
norm_cfg: dict = dict(type='LN', eps=1e-6), | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__( | |
num_patches=num_patches, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
decoder_embed_dim=decoder_embed_dim, | |
decoder_depth=decoder_depth, | |
decoder_num_heads=decoder_num_heads, | |
mlp_ratio=mlp_ratio, | |
norm_cfg=norm_cfg, | |
init_cfg=init_cfg) | |
# map the dim of features from decoder to the dim compatible with | |
# that of CLIP | |
self.decoder_pred = nn.Linear( | |
decoder_embed_dim, predict_feature_dim, bias=True) | |
# use prompt transformer encoder layer, instead of the conventional | |
# transformer encoder layer | |
self.decoder_blocks = nn.ModuleList([ | |
PromptTransformerEncoderLayer( | |
decoder_embed_dim, | |
decoder_num_heads, | |
int(mlp_ratio * decoder_embed_dim), | |
qkv_bias=True, | |
norm_cfg=norm_cfg) for _ in range(decoder_depth) | |
]) | |
def forward(self, x: torch.Tensor, ids_restore: torch.Tensor, | |
ids_keep: torch.Tensor, | |
ids_dump: torch.Tensor) -> torch.Tensor: | |
"""Forward function. | |
Args: | |
x (torch.Tensor): The input features, which is of shape (N, L, C). | |
ids_restore (torch.Tensor): The indices to restore these tokens | |
to the original image. | |
ids_keep (torch.Tensor): The indices of tokens to be kept. | |
ids_dump (torch.Tensor): The indices of tokens to be masked. | |
Returns: | |
torch.Tensor: The reconstructed features, which is of shape | |
(N, L, C). | |
""" | |
# embed tokens | |
x = self.decoder_embed(x) | |
# append mask tokens to sequence | |
mask_tokens = self.mask_token.repeat( | |
x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) | |
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) | |
x_ = torch.gather( | |
x_, | |
dim=1, | |
index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) | |
x = torch.cat([x[:, :1, :], x_], dim=1) | |
# add pos embed | |
x = x + self.decoder_pos_embed | |
# split mask tokens and visible tokens | |
visible_tokens = torch.cat([ | |
x[:, :1, :], | |
torch.gather( | |
x[:, 1:, :], | |
dim=1, | |
index=ids_keep.unsqueeze(-1).repeat(1, 1, x.shape[-1])) | |
], | |
dim=1) | |
x = torch.gather( | |
x[:, 1:, :], | |
dim=1, | |
index=ids_dump.unsqueeze(-1).repeat(1, 1, x.shape[-1])) | |
for blk in self.decoder_blocks: | |
x = blk(x, visible_tokens, ids_restore) | |
# full sequence recovery | |
x_ = torch.cat([visible_tokens[:, 1:, :], x], dim=1) | |
x_ = torch.gather( | |
x_, | |
dim=1, | |
index=ids_restore.unsqueeze(-1).repeat(1, 1, | |
x.shape[-1])) # unshuffle | |
x = torch.cat([visible_tokens[:, :1, :], x_], dim=1) | |
x = self.decoder_norm(x) | |
# predictor projection | |
x = self.decoder_pred(x) | |
return x | |