TTP / mmpretrain /models /multimodal /blip /language_model.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
# flake8: noqa
import math
from typing import Tuple
import torch
import torch.nn as nn
from torch import Tensor, device
try:
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions)
from transformers.modeling_utils import (PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer)
from transformers.models.bert.configuration_bert import BertConfig
except:
ACT2FN = None
BaseModelOutputWithPastAndCrossAttentions = None
BaseModelOutputWithPoolingAndCrossAttentions = None
CausalLMOutputWithCrossAttentions = None
PreTrainedModel = None
apply_chunking_to_forward = None
find_pruneable_heads_and_indices = None
prune_linear_layer = None
BertConfig = None
from mmpretrain.registry import MODELS
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size,
config.hidden_size,
padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings,
config.hidden_size)
if config.add_type_embeddings:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
'position_ids',
torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config,
'position_embedding_type',
'absolute')
self.config = config
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
past_key_values_length=0,
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length:
seq_length +
past_key_values_length]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if token_type_ids is not None:
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
else:
embeddings = inputs_embeds
if self.position_embedding_type == 'absolute':
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and a simple
interface for downloading and loading pretrained models."""
config_class = BertConfig
base_model_prefix = 'bert'
_keys_to_ignore_on_load_missing = [r'position_ids']
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class BertSelfAttention(nn.Module):
def __init__(self, config, is_cross_attention):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
config, 'embedding_size'):
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention '
'heads (%d)' %
(config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size /
config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_width, self.all_head_size)
self.value = nn.Linear(config.encoder_width, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config,
'position_embedding_type',
'absolute')
if (self.position_embedding_type == 'relative_key'
or self.position_embedding_type == 'relative_key_query'):
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(
2 * config.max_position_embeddings - 1,
self.attention_head_size)
self.save_attention = False
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(
self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(
self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer,
key_layer.transpose(-1, -2))
if (self.position_embedding_type == 'relative_key'
or self.position_embedding_type == 'relative_key_query'):
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(
seq_length, dtype=torch.long,
device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(
seq_length, dtype=torch.long,
device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(
distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(
dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == 'relative_key':
relative_position_scores = torch.einsum(
'bhld,lrd->bhlr', query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == 'relative_key_query':
relative_position_scores_query = torch.einsum(
'bhld,lrd->bhlr', query_layer, positional_embedding)
relative_position_scores_key = torch.einsum(
'bhrd,lrd->bhlr', key_layer, positional_embedding)
attention_scores = (
attention_scores + relative_position_scores_query +
relative_position_scores_key)
attention_scores = attention_scores / math.sqrt(
self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if is_cross_attention and self.save_attention:
self.save_attention_map(attention_probs)
attention_probs.register_hook(self.save_attn_gradients)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (
self.all_head_size, )
context_layer = context_layer.view(*new_context_layer_shape)
outputs = ((context_layer, attention_probs) if output_attentions else
(context_layer, ))
outputs = outputs + (past_key_value, )
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config, twin=False, merge=False):
super().__init__()
self.LayerNorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if twin:
self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
else:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if merge:
self.act = ACT2FN[config.hidden_act]
self.merge_layer = nn.Linear(config.hidden_size * 2,
config.hidden_size)
self.merge = True
else:
self.merge = False
def forward(self, hidden_states, input_tensor):
if type(hidden_states) == list:
hidden_states0 = self.dense0(hidden_states[0])
hidden_states1 = self.dense1(hidden_states[1])
if self.merge:
hidden_states = self.merge_layer(
torch.cat([hidden_states0, hidden_states1], dim=-1))
else:
hidden_states = (hidden_states0 + hidden_states1) / 2
else:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config, is_cross_attention=False, layer_num=-1):
super().__init__()
is_nlvr = is_cross_attention and getattr(config, 'nlvr', False)
if is_nlvr:
self.self0 = BertSelfAttention(config, is_nlvr)
self.self1 = BertSelfAttention(config, is_nlvr)
else:
self.self = BertSelfAttention(config, is_cross_attention)
self.output = BertSelfOutput(
config,
twin=is_nlvr,
merge=(is_nlvr and layer_num >= 6),
)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.self.num_attention_heads,
self.self.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(
heads)
self.self.all_head_size = (
self.self.attention_head_size * self.self.num_attention_heads)
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
if type(encoder_hidden_states) == list:
self_outputs0 = self.self0(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states[0],
encoder_attention_mask[0],
past_key_value,
output_attentions,
)
self_outputs1 = self.self1(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states[1],
encoder_attention_mask[1],
past_key_value,
output_attentions,
)
attention_output = self.output(
[self_outputs0[0], self_outputs1[0]], hidden_states)
outputs = (attention_output, ) + self_outputs0[
1:] # add attentions if we output them
else:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,
) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config, layer_num):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.layer_num = layer_num
# compatibility for ALBEF and BLIP
try:
# ALBEF & ALPRO
fusion_layer = self.config.fusion_layer
add_cross_attention = (
fusion_layer <= layer_num and self.config.add_cross_attention)
self.fusion_layer = fusion_layer
except AttributeError:
# BLIP
self.fusion_layer = self.config.num_hidden_layers
add_cross_attention = self.config.add_cross_attention
# if self.config.add_cross_attention:
if self.config.add_cross_attention:
self.crossattention = BertAttention(
config,
is_cross_attention=self.config.add_cross_attention,
layer_num=layer_num,
)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
mode=None,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = (
past_key_value[:2] if past_key_value is not None else None)
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
# TODO line 482 in albef/models/xbert.py
# compatibility for ALBEF and BLIP
if mode in ['multimodal', 'fusion'] and hasattr(
self, 'crossattention'):
assert (
encoder_hidden_states is not None
), 'encoder_hidden_states must be given for cross-attention layers'
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = (outputs + cross_attention_outputs[1:-1]
) # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
outputs = (layer_output, ) + outputs
outputs = outputs + (present_key_value, )
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[BertLayer(config, i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
mode='multimodal',
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = (() if output_attentions
and self.config.add_cross_attention else None)
next_decoder_cache = () if use_cache else None
try:
# ALBEF
fusion_layer = self.config.fusion_layer
except AttributeError:
# BLIP
fusion_layer = self.config.num_hidden_layers
if mode == 'text':
start_layer = 0
# output_layer = self.config.fusion_layer
output_layer = fusion_layer
elif mode == 'fusion':
# start_layer = self.config.fusion_layer
start_layer = fusion_layer
output_layer = self.config.num_hidden_layers
elif mode == 'multimodal':
start_layer = 0
output_layer = self.config.num_hidden_layers
# compatibility for ALBEF and BLIP
# for i in range(self.config.num_hidden_layers):
for i in range(start_layer, output_layer):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[
i] if past_key_values is not None else None
# TODO pay attention to this.
if self.gradient_checkpointing and self.training:
if use_cache:
# TODO: logger here
# logger.warn(
# "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
# )
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value,
output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
mode=mode,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
mode=mode,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1], )
if output_attentions:
all_self_attentions = all_self_attentions + (
layer_outputs[1], )
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
if not return_dict:
return tuple(v for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
@MODELS.register_module()
class BertModel(BertPreTrainedModel):
"""The model can behave as an encoder (with only self-attention) as well as
a decoder, in which case a layer of cross-attention is added between the
self-attention layers, following the architecture described in `Attention
is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani,
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser and Illia Polosukhin. argument and
:obj:`add_cross_attention` set to :obj:`True`; an
:obj:`encoder_hidden_states` is then expected as an input to the forward
pass.
"""
def __init__(self, config, add_pooling_layer=True):
if not isinstance(config, BertConfig):
config = BertConfig.from_dict(config)
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self,
attention_mask: Tensor,
input_shape: Tuple[int],
device: device,
is_decoder: bool,
) -> Tensor:
"""Makes broadcastable attention and causal masks so that future and
masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = (
seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <=
seq_ids[None, :, None])
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[
1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = (
causal_mask[:, None, :, :] *
attention_mask[:, None, None, :])
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
'Wrong shape for input_ids (shape {}) or attention_mask (shape {})'
.format(input_shape, attention_mask.shape))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
is_decoder=False,
mode='multimodal',
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
"""
output_attentions = (
output_attentions if output_attentions is not None else
self.config.output_attentions)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = (
return_dict
if return_dict is not None else self.config.use_return_dict)
if is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
'You cannot specify both input_ids and inputs_embeds at the same time'
)
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = inputs_embeds.device
elif encoder_embeds is not None:
input_shape = encoder_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = encoder_embeds.device
else:
raise ValueError(
'You have to specify either input_ids or inputs_embeds or encoder_embeds'
)
# past_key_values_length
past_key_values_length = (
past_key_values[0][0].shape[2]
if past_key_values is not None else 0)
if attention_mask is None:
attention_mask = torch.ones(
((batch_size, seq_length + past_key_values_length)),
device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, device, is_decoder)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if type(encoder_hidden_states) == list:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
0].size()
else:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size,
encoder_sequence_length)
if type(encoder_attention_mask) == list:
encoder_extended_attention_mask = [
self.invert_attention_mask(mask)
for mask in encoder_attention_mask
]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask)
else:
encoder_extended_attention_mask = self.invert_attention_mask(
encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask,
self.config.num_hidden_layers)
if encoder_embeds is None:
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
else:
embedding_output = encoder_embeds
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
mode=mode,
)
sequence_output = encoder_outputs[0]
pooled_output = (
self.pooler(sequence_output) if self.pooler is not None else None)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class BaseEncoder(nn.Module):
"""Base class for primitive encoders, such as ViT, TimeSformer, etc."""
def __init__(self):
super().__init__()
def forward_features(self, samples, **kwargs):
raise NotImplementedError
@property
def device(self):
return list(self.parameters())[0].device
@MODELS.register_module()
class XBertEncoder(BertModel, BaseEncoder):
def __init__(self, med_config, from_pretrained=False):
med_config = BertConfig.from_dict(med_config)
super().__init__(config=med_config, add_pooling_layer=False)
def forward_automask(self, tokenized_text, visual_embeds, **kwargs):
image_atts = torch.ones(
visual_embeds.size()[:-1], dtype=torch.long).to(self.device)
text = tokenized_text
text_output = super().forward(
text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=visual_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return text_output
def forward_text(self, tokenized_text, **kwargs):
text = tokenized_text
token_type_ids = kwargs.get('token_type_ids', None)
text_output = super().forward(
text.input_ids,
attention_mask=text.attention_mask,
token_type_ids=token_type_ids,
return_dict=True,
mode='text',
)
return text_output
@MODELS.register_module()
class Linear(torch.nn.Linear):
"""Wrapper for linear function."""
@MODELS.register_module()
class BertLMHeadModel(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r'pooler']
_keys_to_ignore_on_load_missing = [
r'position_ids', r'predictions.decoder.bias'
]
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
return_logits=False,
is_decoder=True,
reduction='mean',
mode='multimodal',
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
Returns:
Example::
>>> from transformers import BertTokenizer,
BertLMHeadModel, BertConfig
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained(
'bert-base-cased')
>>> config = BertConfig.from_pretrained(
"bert-base-cased")
>>> model = BertLMHeadModel.from_pretrained(
'bert-base-cased', config=config)
>>> inputs = tokenizer(
"Hello, my dog is cute",
return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
"""
return_dict = (
return_dict
if return_dict is not None else self.config.use_return_dict)
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
mode=mode,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores[:, :-1, :].contiguous()
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :
-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(
reduction=reduction, label_smoothing=0.1)
lm_loss = loss_fct(
shifted_prediction_scores.view(-1, self.config.vocab_size),
labels.view(-1))
if reduction == 'none':
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
if not return_dict:
output = (prediction_scores, ) + outputs[2:]
return ((lm_loss, ) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self,
input_ids,
past=None,
attention_mask=None,
**model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model,
# the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
'input_ids':
input_ids,
'attention_mask':
attention_mask,
'past_key_values':
past,
'encoder_hidden_states':
model_kwargs.get('encoder_hidden_states', None),
'encoder_attention_mask':
model_kwargs.get('encoder_attention_mask', None),
'is_decoder':
True,
}
def _reorder_cache(self, past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(
past_state.index_select(0, beam_idx)
for past_state in layer_past), )
return reordered_past
@MODELS.register_module()
class XBertLMHeadDecoder(BertLMHeadModel):
"""This class decouples the decoder forward logic from the VL model.
In this way, different VL models can share this decoder as long as they
feed encoder_embeds as required.
"""
def __init__(self, med_config):
self.med_config = BertConfig.from_dict(med_config)
super(XBertLMHeadDecoder, self).__init__(config=self.med_config)
def generate_from_encoder(self,
tokenized_prompt,
visual_embeds,
sep_token_id,
pad_token_id,
use_nucleus_sampling=False,
num_beams=3,
max_length=30,
min_length=10,
top_p=0.9,
repetition_penalty=1.0,
**kwargs):
if not use_nucleus_sampling:
num_beams = num_beams
visual_embeds = visual_embeds.repeat_interleave(num_beams, dim=0)
image_atts = torch.ones(
visual_embeds.size()[:-1], dtype=torch.long).to(self.device)
model_kwargs = {
'encoder_hidden_states': visual_embeds,
'encoder_attention_mask': image_atts,
}
if use_nucleus_sampling:
# nucleus sampling
outputs = self.generate(
input_ids=tokenized_prompt.input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=sep_token_id,
pad_token_id=pad_token_id,
repetition_penalty=1.1,
**model_kwargs)
else:
# beam search
outputs = self.generate(
input_ids=tokenized_prompt.input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=sep_token_id,
pad_token_id=pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
return outputs