Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import List, Optional, Sequence, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from mmcv.cnn.bricks.drop import build_dropout | |
| from mmcv.cnn.bricks.transformer import FFN, PatchEmbed | |
| from mmengine.model import BaseModule, ModuleList | |
| from mmengine.model.weight_init import trunc_normal_ | |
| from mmpretrain.registry import MODELS | |
| from ..utils import (BEiTAttention, build_norm_layer, resize_pos_embed, | |
| resize_relative_position_bias_table, to_2tuple) | |
| from .base_backbone import BaseBackbone | |
| from .vision_transformer import TransformerEncoderLayer | |
| class RelativePositionBias(BaseModule): | |
| """Relative Position Bias. | |
| This module is copied from | |
| https://github.com/microsoft/unilm/blob/master/beit/modeling_finetune.py#L209. | |
| Args: | |
| window_size (Sequence[int]): The window size of the relative | |
| position bias. | |
| num_heads (int): The number of head in multi-head attention. | |
| with_cls_token (bool): To indicate the backbone has cls_token or not. | |
| Defaults to True. | |
| """ | |
| def __init__( | |
| self, | |
| window_size: Sequence[int], | |
| num_heads: int, | |
| with_cls_token: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.window_size = window_size | |
| if with_cls_token: | |
| num_extra_tokens = 3 | |
| else: | |
| num_extra_tokens = 0 | |
| # cls to token & token to cls & cls to cls | |
| self.num_relative_distance = (2 * window_size[0] - 1) * ( | |
| 2 * window_size[1] - 1) + num_extra_tokens | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros(self.num_relative_distance, | |
| num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
| # get pair-wise relative position index for each | |
| # token inside the window | |
| coords_h = torch.arange(window_size[0]) | |
| coords_w = torch.arange(window_size[1]) | |
| coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
| coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
| relative_coords = coords_flatten[:, :, None] -\ | |
| coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
| relative_coords = relative_coords.permute( | |
| 1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
| relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
| relative_coords[:, :, 1] += window_size[1] - 1 | |
| relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
| if with_cls_token: | |
| relative_position_index = torch.zeros( | |
| size=(window_size[0] * window_size[1] + 1, ) * 2, | |
| dtype=relative_coords.dtype) | |
| relative_position_index[1:, 1:] = relative_coords.sum( | |
| -1) # Wh*Ww, Wh*Ww | |
| relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
| relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
| relative_position_index[0, 0] = self.num_relative_distance - 1 | |
| else: | |
| relative_position_index = torch.zeros( | |
| size=(window_size[0] * window_size[1], ) * 2, | |
| dtype=relative_coords.dtype) | |
| relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
| self.register_buffer('relative_position_index', | |
| relative_position_index) | |
| def forward(self) -> torch.Tensor: | |
| # Wh*Ww,Wh*Ww,nH | |
| relative_position_bias = self.relative_position_bias_table[ | |
| self.relative_position_index.view(-1)].view( | |
| self.window_size[0] * self.window_size[1] + 1, | |
| self.window_size[0] * self.window_size[1] + 1, -1) | |
| return relative_position_bias.permute( | |
| 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
| class BEiTTransformerEncoderLayer(TransformerEncoderLayer): | |
| """Implements one encoder layer in BEiT. | |
| Comparing with conventional ``TransformerEncoderLayer``, this module | |
| adds weights to the shortcut connection. In addition, ``BEiTAttention`` | |
| is used to replace the original ``MultiheadAttention`` in | |
| ``TransformerEncoderLayer``. | |
| Args: | |
| embed_dims (int): The feature dimension. | |
| num_heads (int): Parallel attention heads. | |
| feedforward_channels (int): The hidden dimension for FFNs. | |
| layer_scale_init_value (float): The initialization value for | |
| the learnable scaling of attention and FFN. 1 means no scaling. | |
| drop_rate (float): Probability of an element to be zeroed | |
| after the feed forward layer. Defaults to 0. | |
| window_size (tuple[int]): The height and width of the window. | |
| Defaults to None. | |
| use_rel_pos_bias (bool): Whether to use unique relative position bias, | |
| if False, use shared relative position bias defined in backbone. | |
| attn_drop_rate (float): The drop out rate for attention layer. | |
| Defaults to 0.0. | |
| drop_path_rate (float): Stochastic depth rate. Default 0.0. | |
| num_fcs (int): The number of fully-connected layers for FFNs. | |
| Defaults to 2. | |
| bias (bool | str): The option to add leanable bias for q, k, v. If bias | |
| is True, it will add leanable bias. If bias is 'qv_bias', it will | |
| only add leanable bias for q, v. If bias is False, it will not add | |
| bias for q, k, v. Default to 'qv_bias'. | |
| act_cfg (dict): The activation config for FFNs. | |
| Defaults to ``dict(type='GELU')``. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Defaults to dict(type='LN'). | |
| attn_cfg (dict): The configuration for the attention layer. | |
| Defaults to an empty dict. | |
| ffn_cfg (dict): The configuration for the ffn layer. | |
| Defaults to ``dict(add_identity=False)``. | |
| init_cfg (dict or List[dict], optional): Initialization config dict. | |
| Defaults to None. | |
| """ | |
| def __init__(self, | |
| embed_dims: int, | |
| num_heads: int, | |
| feedforward_channels: int, | |
| layer_scale_init_value: float, | |
| window_size: Tuple[int, int], | |
| use_rel_pos_bias: bool, | |
| drop_rate: float = 0., | |
| attn_drop_rate: float = 0., | |
| drop_path_rate: float = 0., | |
| num_fcs: int = 2, | |
| bias: Union[str, bool] = 'qv_bias', | |
| act_cfg: dict = dict(type='GELU'), | |
| norm_cfg: dict = dict(type='LN'), | |
| attn_cfg: dict = dict(), | |
| ffn_cfg: dict = dict(add_identity=False), | |
| init_cfg: Optional[Union[dict, List[dict]]] = None) -> None: | |
| super().__init__( | |
| embed_dims=embed_dims, | |
| num_heads=num_heads, | |
| feedforward_channels=feedforward_channels, | |
| attn_drop_rate=attn_drop_rate, | |
| drop_path_rate=0., | |
| drop_rate=0., | |
| num_fcs=num_fcs, | |
| act_cfg=act_cfg, | |
| norm_cfg=norm_cfg, | |
| init_cfg=init_cfg) | |
| attn_cfg = { | |
| 'window_size': window_size, | |
| 'use_rel_pos_bias': use_rel_pos_bias, | |
| 'qk_scale': None, | |
| 'embed_dims': embed_dims, | |
| 'num_heads': num_heads, | |
| 'attn_drop': attn_drop_rate, | |
| 'proj_drop': drop_rate, | |
| 'bias': bias, | |
| **attn_cfg, | |
| } | |
| self.attn = BEiTAttention(**attn_cfg) | |
| ffn_cfg = { | |
| 'embed_dims': embed_dims, | |
| 'feedforward_channels': feedforward_channels, | |
| 'num_fcs': num_fcs, | |
| 'ffn_drop': drop_rate, | |
| 'dropout_layer': dict(type='DropPath', drop_prob=drop_path_rate), | |
| 'act_cfg': act_cfg, | |
| **ffn_cfg, | |
| } | |
| self.ffn = FFN(**ffn_cfg) | |
| # NOTE: drop path for stochastic depth, we shall see if | |
| # this is better than dropout here | |
| dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate) | |
| self.drop_path = build_dropout( | |
| dropout_layer) if dropout_layer else nn.Identity() | |
| if layer_scale_init_value > 0: | |
| self.gamma_1 = nn.Parameter( | |
| layer_scale_init_value * torch.ones((embed_dims)), | |
| requires_grad=True) | |
| self.gamma_2 = nn.Parameter( | |
| layer_scale_init_value * torch.ones((embed_dims)), | |
| requires_grad=True) | |
| else: | |
| self.gamma_1, self.gamma_2 = None, None | |
| def forward(self, x: torch.Tensor, | |
| rel_pos_bias: torch.Tensor) -> torch.Tensor: | |
| if self.gamma_1 is None: | |
| x = x + self.drop_path( | |
| self.attn(self.ln1(x), rel_pos_bias=rel_pos_bias)) | |
| x = x + self.drop_path(self.ffn(self.ln2(x))) | |
| else: | |
| x = x + self.drop_path(self.gamma_1 * self.attn( | |
| self.ln1(x), rel_pos_bias=rel_pos_bias)) | |
| x = x + self.drop_path(self.gamma_2 * self.ffn(self.ln2(x))) | |
| return x | |
| class BEiTViT(BaseBackbone): | |
| """Backbone for BEiT. | |
| A PyTorch implement of : `BEiT: BERT Pre-Training of Image Transformers | |
| <https://arxiv.org/abs/2106.08254>`_ | |
| A PyTorch implement of : `BEiT v2: Masked Image Modeling with | |
| Vector-Quantized Visual Tokenizers <https://arxiv.org/abs/2208.06366>`_ | |
| Args: | |
| arch (str | dict): BEiT architecture. If use string, choose from | |
| 'base', 'large'. If use dict, it should have below keys: | |
| - **embed_dims** (int): The dimensions of embedding. | |
| - **num_layers** (int): The number of transformer encoder layers. | |
| - **num_heads** (int): The number of heads in attention modules. | |
| - **feedforward_channels** (int): The hidden dimensions in | |
| feedforward modules. | |
| Defaults to 'base'. | |
| img_size (int | tuple): The expected input image shape. Because we | |
| support dynamic input shape, just set the argument to the most | |
| common input image shape. Defaults to 224. | |
| patch_size (int | tuple): The patch size in patch embedding. | |
| Defaults to 16. | |
| in_channels (int): The num of input channels. Defaults to 3. | |
| out_indices (Sequence | int): Output from which stages. | |
| Defaults to -1, means the last stage. | |
| drop_rate (float): Probability of an element to be zeroed. | |
| Defaults to 0. | |
| drop_path_rate (float): stochastic depth rate. Defaults to 0. | |
| bias (bool | str): The option to add leanable bias for q, k, v. If bias | |
| is True, it will add leanable bias. If bias is 'qv_bias', it will | |
| only add leanable bias for q, v. If bias is False, it will not add | |
| bias for q, k, v. Default to 'qv_bias'. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Defaults to ``dict(type='LN')``. | |
| final_norm (bool): Whether to add a additional layer to normalize | |
| final feature map. Defaults to True. | |
| out_type (str): The type of output features. Please choose from | |
| - ``"cls_token"``: The class token tensor with shape (B, C). | |
| - ``"featmap"``: The feature map tensor from the patch tokens | |
| with shape (B, C, H, W). | |
| - ``"avg_featmap"``: The global averaged feature map tensor | |
| with shape (B, C). | |
| - ``"raw"``: The raw feature tensor includes patch tokens and | |
| class tokens with shape (B, L, C). | |
| Defaults to ``"avg_featmap"``. | |
| with_cls_token (bool): Whether concatenating class token into image | |
| tokens as transformer input. Defaults to True. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. Defaults to -1. | |
| use_abs_pos_emb (bool): Use position embedding like vanilla ViT. | |
| Defaults to False. | |
| use_rel_pos_bias (bool): Use relative position embedding in each | |
| transformer encoder layer. Defaults to True. | |
| use_shared_rel_pos_bias (bool): Use shared relative position embedding, | |
| all transformer encoder layers share the same relative position | |
| embedding. Defaults to False. | |
| layer_scale_init_value (float): The initialization value for | |
| the learnable scaling of attention and FFN. Defaults to 0.1. | |
| interpolate_mode (str): Select the interpolate mode for position | |
| embeding vector resize. Defaults to "bicubic". | |
| patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict. | |
| layer_cfgs (Sequence | dict): Configs of each transformer layer in | |
| encoder. Defaults to an empty dict. | |
| init_cfg (dict, optional): Initialization config dict. | |
| Defaults to None. | |
| """ | |
| arch_zoo = { | |
| **dict.fromkeys( | |
| ['s', 'small'], { | |
| 'embed_dims': 768, | |
| 'num_layers': 8, | |
| 'num_heads': 8, | |
| 'feedforward_channels': 768 * 3, | |
| }), | |
| **dict.fromkeys( | |
| ['b', 'base'], { | |
| 'embed_dims': 768, | |
| 'num_layers': 12, | |
| 'num_heads': 12, | |
| 'feedforward_channels': 3072 | |
| }), | |
| **dict.fromkeys( | |
| ['l', 'large'], { | |
| 'embed_dims': 1024, | |
| 'num_layers': 24, | |
| 'num_heads': 16, | |
| 'feedforward_channels': 4096 | |
| }), | |
| **dict.fromkeys( | |
| ['eva-g', 'eva-giant'], | |
| { | |
| # The implementation in EVA | |
| # <https://arxiv.org/abs/2211.07636> | |
| 'embed_dims': 1408, | |
| 'num_layers': 40, | |
| 'num_heads': 16, | |
| 'feedforward_channels': 6144 | |
| }), | |
| **dict.fromkeys( | |
| ['deit-t', 'deit-tiny'], { | |
| 'embed_dims': 192, | |
| 'num_layers': 12, | |
| 'num_heads': 3, | |
| 'feedforward_channels': 192 * 4 | |
| }), | |
| **dict.fromkeys( | |
| ['deit-s', 'deit-small'], { | |
| 'embed_dims': 384, | |
| 'num_layers': 12, | |
| 'num_heads': 6, | |
| 'feedforward_channels': 384 * 4 | |
| }), | |
| **dict.fromkeys( | |
| ['deit-b', 'deit-base'], { | |
| 'embed_dims': 768, | |
| 'num_layers': 12, | |
| 'num_heads': 12, | |
| 'feedforward_channels': 768 * 4 | |
| }), | |
| } | |
| num_extra_tokens = 1 # class token | |
| OUT_TYPES = {'raw', 'cls_token', 'featmap', 'avg_featmap'} | |
| def __init__(self, | |
| arch='base', | |
| img_size=224, | |
| patch_size=16, | |
| in_channels=3, | |
| out_indices=-1, | |
| drop_rate=0, | |
| drop_path_rate=0, | |
| bias='qv_bias', | |
| norm_cfg=dict(type='LN', eps=1e-6), | |
| final_norm=False, | |
| out_type='avg_featmap', | |
| with_cls_token=True, | |
| frozen_stages=-1, | |
| use_abs_pos_emb=False, | |
| use_rel_pos_bias=True, | |
| use_shared_rel_pos_bias=False, | |
| interpolate_mode='bicubic', | |
| layer_scale_init_value=0.1, | |
| patch_cfg=dict(), | |
| layer_cfgs=dict(), | |
| init_cfg=None): | |
| super(BEiTViT, self).__init__(init_cfg) | |
| if isinstance(arch, str): | |
| arch = arch.lower() | |
| assert arch in set(self.arch_zoo), \ | |
| f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
| self.arch_settings = self.arch_zoo[arch] | |
| else: | |
| essential_keys = { | |
| 'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels' | |
| } | |
| assert isinstance(arch, dict) and essential_keys <= set(arch), \ | |
| f'Custom arch needs a dict with keys {essential_keys}' | |
| self.arch_settings = arch | |
| self.embed_dims = self.arch_settings['embed_dims'] | |
| self.num_layers = self.arch_settings['num_layers'] | |
| self.img_size = to_2tuple(img_size) | |
| # Set patch embedding | |
| _patch_cfg = dict( | |
| in_channels=in_channels, | |
| input_size=img_size, | |
| embed_dims=self.embed_dims, | |
| conv_type='Conv2d', | |
| kernel_size=patch_size, | |
| stride=patch_size, | |
| ) | |
| _patch_cfg.update(patch_cfg) | |
| self.patch_embed = PatchEmbed(**_patch_cfg) | |
| self.patch_resolution = self.patch_embed.init_out_size | |
| num_patches = self.patch_resolution[0] * self.patch_resolution[1] | |
| # Set out type | |
| if out_type not in self.OUT_TYPES: | |
| raise ValueError(f'Unsupported `out_type` {out_type}, please ' | |
| f'choose from {self.OUT_TYPES}') | |
| self.out_type = out_type | |
| # Set cls token | |
| self.with_cls_token = with_cls_token | |
| if with_cls_token: | |
| self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims)) | |
| self.num_extra_tokens = 1 | |
| elif out_type != 'cls_token': | |
| self.cls_token = None | |
| self.num_extra_tokens = 0 | |
| else: | |
| raise ValueError( | |
| 'with_cls_token must be True when `out_type="cls_token"`.') | |
| # Set position embedding | |
| self.interpolate_mode = interpolate_mode | |
| if use_abs_pos_emb: | |
| self.pos_embed = nn.Parameter( | |
| torch.zeros(1, num_patches + self.num_extra_tokens, | |
| self.embed_dims)) | |
| self._register_load_state_dict_pre_hook(self._prepare_pos_embed) | |
| else: | |
| self.pos_embed = None | |
| self.drop_after_pos = nn.Dropout(p=drop_rate) | |
| assert not (use_rel_pos_bias and use_shared_rel_pos_bias), ( | |
| '`use_rel_pos_bias` and `use_shared_rel_pos_bias` cannot be set ' | |
| 'to True at the same time') | |
| self.use_rel_pos_bias = use_rel_pos_bias | |
| if use_shared_rel_pos_bias: | |
| self.rel_pos_bias = RelativePositionBias( | |
| window_size=self.patch_resolution, | |
| num_heads=self.arch_settings['num_heads']) | |
| else: | |
| self.rel_pos_bias = None | |
| self._register_load_state_dict_pre_hook( | |
| self._prepare_relative_position_bias_table) | |
| if isinstance(out_indices, int): | |
| out_indices = [out_indices] | |
| assert isinstance(out_indices, Sequence), \ | |
| f'"out_indices" must by a sequence or int, ' \ | |
| f'get {type(out_indices)} instead.' | |
| for i, index in enumerate(out_indices): | |
| if index < 0: | |
| out_indices[i] = self.num_layers + index | |
| assert 0 <= out_indices[i] <= self.num_layers, \ | |
| f'Invalid out_indices {index}' | |
| self.out_indices = out_indices | |
| # stochastic depth decay rule | |
| dpr = np.linspace(0, drop_path_rate, self.num_layers) | |
| self.layers = ModuleList() | |
| if isinstance(layer_cfgs, dict): | |
| layer_cfgs = [layer_cfgs] * self.num_layers | |
| for i in range(self.num_layers): | |
| _layer_cfg = dict( | |
| embed_dims=self.embed_dims, | |
| num_heads=self.arch_settings['num_heads'], | |
| feedforward_channels=self. | |
| arch_settings['feedforward_channels'], | |
| layer_scale_init_value=layer_scale_init_value, | |
| window_size=self.patch_resolution, | |
| use_rel_pos_bias=use_rel_pos_bias, | |
| drop_rate=drop_rate, | |
| drop_path_rate=dpr[i], | |
| bias=bias, | |
| norm_cfg=norm_cfg) | |
| _layer_cfg.update(layer_cfgs[i]) | |
| self.layers.append(BEiTTransformerEncoderLayer(**_layer_cfg)) | |
| self.frozen_stages = frozen_stages | |
| self.final_norm = final_norm | |
| if final_norm: | |
| self.ln1 = build_norm_layer(norm_cfg, self.embed_dims) | |
| if out_type == 'avg_featmap': | |
| self.ln2 = build_norm_layer(norm_cfg, self.embed_dims) | |
| # freeze stages only when self.frozen_stages > 0 | |
| if self.frozen_stages > 0: | |
| self._freeze_stages() | |
| def norm1(self): | |
| return self.ln1 | |
| def norm2(self): | |
| return self.ln2 | |
| def init_weights(self): | |
| super(BEiTViT, self).init_weights() | |
| if not (isinstance(self.init_cfg, dict) | |
| and self.init_cfg['type'] == 'Pretrained'): | |
| if self.pos_embed is not None: | |
| trunc_normal_(self.pos_embed, std=0.02) | |
| def _prepare_pos_embed(self, state_dict, prefix, *args, **kwargs): | |
| name = prefix + 'pos_embed' | |
| if name not in state_dict.keys(): | |
| return | |
| ckpt_pos_embed_shape = state_dict[name].shape | |
| if (not self.with_cls_token | |
| and ckpt_pos_embed_shape[1] == self.pos_embed.shape[1] + 1): | |
| # Remove cls token from state dict if it's not used. | |
| state_dict[name] = state_dict[name][:, 1:] | |
| ckpt_pos_embed_shape = state_dict[name].shape | |
| if self.pos_embed.shape != ckpt_pos_embed_shape: | |
| from mmengine.logging import MMLogger | |
| logger = MMLogger.get_current_instance() | |
| logger.info( | |
| f'Resize the pos_embed shape from {ckpt_pos_embed_shape} ' | |
| f'to {self.pos_embed.shape}.') | |
| ckpt_pos_embed_shape = to_2tuple( | |
| int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens))) | |
| pos_embed_shape = self.patch_embed.init_out_size | |
| state_dict[name] = resize_pos_embed(state_dict[name], | |
| ckpt_pos_embed_shape, | |
| pos_embed_shape, | |
| self.interpolate_mode, | |
| self.num_extra_tokens) | |
| def resize_pos_embed(*args, **kwargs): | |
| """Interface for backward-compatibility.""" | |
| return resize_pos_embed(*args, **kwargs) | |
| def _freeze_stages(self): | |
| # freeze position embedding | |
| if self.pos_embed is not None: | |
| self.pos_embed.requires_grad = False | |
| # set dropout to eval model | |
| self.drop_after_pos.eval() | |
| # freeze patch embedding | |
| self.patch_embed.eval() | |
| for param in self.patch_embed.parameters(): | |
| param.requires_grad = False | |
| # freeze cls_token | |
| if self.with_cls_token: | |
| self.cls_token.requires_grad = False | |
| # freeze layers | |
| for i in range(1, self.frozen_stages + 1): | |
| m = self.layers[i - 1] | |
| m.eval() | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| # freeze the last layer norm | |
| if self.frozen_stages == len(self.layers): | |
| if self.final_norm: | |
| self.ln1.eval() | |
| for param in self.ln1.parameters(): | |
| param.requires_grad = False | |
| if self.out_type == 'avg_featmap': | |
| self.ln2.eval() | |
| for param in self.ln2.parameters(): | |
| param.requires_grad = False | |
| def forward(self, x): | |
| B = x.shape[0] | |
| x, patch_resolution = self.patch_embed(x) | |
| if self.cls_token is not None: | |
| # stole cls_tokens impl from Phil Wang, thanks | |
| cls_token = self.cls_token.expand(B, -1, -1) | |
| x = torch.cat((cls_token, x), dim=1) | |
| if self.pos_embed is not None: | |
| x = x + resize_pos_embed( | |
| self.pos_embed, | |
| self.patch_resolution, | |
| patch_resolution, | |
| mode=self.interpolate_mode, | |
| num_extra_tokens=self.num_extra_tokens) | |
| x = self.drop_after_pos(x) | |
| rel_pos_bias = self.rel_pos_bias() \ | |
| if self.rel_pos_bias is not None else None | |
| outs = [] | |
| for i, layer in enumerate(self.layers): | |
| x = layer(x, rel_pos_bias) | |
| if i == len(self.layers) - 1 and self.final_norm: | |
| x = self.ln1(x) | |
| if i in self.out_indices: | |
| outs.append(self._format_output(x, patch_resolution)) | |
| return tuple(outs) | |
| def _format_output(self, x, hw): | |
| if self.out_type == 'raw': | |
| return x | |
| if self.out_type == 'cls_token': | |
| return x[:, 0] | |
| patch_token = x[:, self.num_extra_tokens:] | |
| if self.out_type == 'featmap': | |
| B = x.size(0) | |
| # (B, N, C) -> (B, H, W, C) -> (B, C, H, W) | |
| return patch_token.reshape(B, *hw, -1).permute(0, 3, 1, 2) | |
| if self.out_type == 'avg_featmap': | |
| return self.ln2(patch_token.mean(dim=1)) | |
| def _prepare_relative_position_bias_table(self, state_dict, prefix, *args, | |
| **kwargs): | |
| from mmengine.logging import MMLogger | |
| logger = MMLogger.get_current_instance() | |
| if self.use_rel_pos_bias and 'rel_pos_bias.relative_position_bias_table' in state_dict: # noqa:E501 | |
| logger.info('Expand the shared relative position embedding to ' | |
| 'each transformer block.') | |
| rel_pos_bias = state_dict[ | |
| 'rel_pos_bias.relative_position_bias_table'] | |
| for i in range(self.num_layers): | |
| state_dict[ | |
| f'layers.{i}.attn.relative_position_bias_table'] = \ | |
| rel_pos_bias.clone() | |
| state_dict.pop('rel_pos_bias.relative_position_bias_table') | |
| state_dict.pop('rel_pos_bias.relative_position_index') | |
| state_dict_model = self.state_dict() | |
| all_keys = list(state_dict_model.keys()) | |
| for key in all_keys: | |
| if 'relative_position_bias_table' in key: | |
| ckpt_key = prefix + key | |
| if ckpt_key not in state_dict: | |
| continue | |
| rel_pos_bias_pretrained = state_dict[ckpt_key] | |
| rel_pos_bias_current = state_dict_model[key] | |
| L1, nH1 = rel_pos_bias_pretrained.size() | |
| L2, nH2 = rel_pos_bias_current.size() | |
| src_size = int((L1 - 3)**0.5) | |
| dst_size = int((L2 - 3)**0.5) | |
| if L1 != L2: | |
| extra_tokens = rel_pos_bias_pretrained[-3:, :] | |
| rel_pos_bias = rel_pos_bias_pretrained[:-3, :] | |
| new_rel_pos_bias = resize_relative_position_bias_table( | |
| src_size, dst_size, rel_pos_bias, nH1) | |
| new_rel_pos_bias = torch.cat( | |
| (new_rel_pos_bias, extra_tokens), dim=0) | |
| logger.info('Resize the relative_position_bias_table from ' | |
| f'{state_dict[ckpt_key].shape} to ' | |
| f'{new_rel_pos_bias.shape}') | |
| state_dict[ckpt_key] = new_rel_pos_bias | |
| # The index buffer need to be re-generated. | |
| index_buffer = ckpt_key.replace('bias_table', 'index') | |
| if index_buffer in state_dict: | |
| del state_dict[index_buffer] | |
| def get_layer_depth(self, param_name: str, prefix: str = ''): | |
| """Get the layer-wise depth of a parameter. | |
| Args: | |
| param_name (str): The name of the parameter. | |
| prefix (str): The prefix for the parameter. | |
| Defaults to an empty string. | |
| Returns: | |
| Tuple[int, int]: The layer-wise depth and the num of layers. | |
| Note: | |
| The first depth is the stem module (``layer_depth=0``), and the | |
| last depth is the subsequent module (``layer_depth=num_layers-1``) | |
| """ | |
| num_layers = self.num_layers + 2 | |
| if not param_name.startswith(prefix): | |
| # For subsequent module like head | |
| return num_layers - 1, num_layers | |
| param_name = param_name[len(prefix):] | |
| if param_name in ('cls_token', 'pos_embed'): | |
| layer_depth = 0 | |
| elif param_name.startswith('patch_embed'): | |
| layer_depth = 0 | |
| elif param_name.startswith('layers'): | |
| layer_id = int(param_name.split('.')[1]) | |
| layer_depth = layer_id + 1 | |
| else: | |
| layer_depth = num_layers - 1 | |
| return layer_depth, num_layers | |