TTP / mmdet /models /tracking_heads /roi_track_head.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta
from typing import List, Optional, Tuple
from mmengine.model import BaseModule
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import TrackSampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import InstanceList
@MODELS.register_module()
class RoITrackHead(BaseModule, metaclass=ABCMeta):
"""The roi track head.
This module is used in multi-object tracking methods, such as MaskTrack
R-CNN.
Args:
roi_extractor (dict): Configuration of roi extractor. Defaults to None.
embed_head (dict): Configuration of embed head. Defaults to None.
train_cfg (dict): Configuration when training. Defaults to None.
test_cfg (dict): Configuration when testing. Defaults to None.
init_cfg (dict): Configuration of initialization. Defaults to None.
"""
def __init__(self,
roi_extractor: Optional[dict] = None,
embed_head: Optional[dict] = None,
regress_head: Optional[dict] = None,
train_cfg: Optional[dict] = None,
test_cfg: Optional[dict] = None,
init_cfg: Optional[dict] = None,
*args,
**kwargs):
super().__init__(init_cfg=init_cfg)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if embed_head is not None:
self.init_embed_head(roi_extractor, embed_head)
if regress_head is not None:
raise NotImplementedError('Regression head is not supported yet.')
self.init_assigner_sampler()
def init_embed_head(self, roi_extractor, embed_head) -> None:
"""Initialize ``embed_head``"""
self.roi_extractor = MODELS.build(roi_extractor)
self.embed_head = MODELS.build(embed_head)
def init_assigner_sampler(self) -> None:
"""Initialize assigner and sampler."""
self.bbox_assigner = None
self.bbox_sampler = None
if self.train_cfg:
self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
self.bbox_sampler = TASK_UTILS.build(
self.train_cfg.sampler, default_args=dict(context=self))
@property
def with_track(self) -> bool:
"""bool: whether the multi-object tracker has an embed head"""
return hasattr(self, 'embed_head') and self.embed_head is not None
def extract_roi_feats(
self, feats: List[Tensor],
bboxes: List[Tensor]) -> Tuple[Tuple[Tensor], List[int]]:
"""Extract roi features.
Args:
feats (list[Tensor]): list of multi-level image features.
bboxes (list[Tensor]): list of bboxes in sampling result.
Returns:
tuple[tuple[Tensor], list[int]]: The extracted roi features and
the number of bboxes in each image.
"""
rois = bbox2roi(bboxes)
bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs],
rois)
num_bbox_per_img = [len(bbox) for bbox in bboxes]
return bbox_feats, num_bbox_per_img
def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor],
rpn_results_list: InstanceList, data_samples: TrackSampleList,
**kwargs) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
key_feats (list[Tensor]): list of multi-level image features.
ref_feats (list[Tensor]): list of multi-level ref_img features.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
data_samples (list[:obj:`TrackDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance`.
Returns:
dict: A dictionary of loss components.
"""
assert self.with_track
batch_gt_instances = []
ref_batch_gt_instances = []
batch_gt_instances_ignore = []
gt_instance_ids = []
ref_gt_instance_ids = []
for track_data_sample in data_samples:
key_data_sample = track_data_sample.get_key_frames()[0]
ref_data_sample = track_data_sample.get_ref_frames()[0]
batch_gt_instances.append(key_data_sample.gt_instances)
ref_batch_gt_instances.append(ref_data_sample.gt_instances)
if 'ignored_instances' in key_data_sample:
batch_gt_instances_ignore.append(
key_data_sample.ignored_instances)
else:
batch_gt_instances_ignore.append(None)
gt_instance_ids.append(key_data_sample.gt_instances.instances_ids)
ref_gt_instance_ids.append(
ref_data_sample.gt_instances.instances_ids)
losses = dict()
num_imgs = len(data_samples)
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
sampling_results = []
for i in range(num_imgs):
rpn_results = rpn_results_list[i]
assign_result = self.bbox_assigner.assign(
rpn_results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = self.bbox_sampler.sample(
assign_result,
rpn_results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in key_feats])
sampling_results.append(sampling_result)
bboxes = [res.bboxes for res in sampling_results]
bbox_feats, num_bbox_per_img = self.extract_roi_feats(
key_feats, bboxes)
# batch_size is 1
ref_gt_bboxes = [
ref_batch_gt_instance.bboxes
for ref_batch_gt_instance in ref_batch_gt_instances
]
ref_bbox_feats, num_bbox_per_ref_img = self.extract_roi_feats(
ref_feats, ref_gt_bboxes)
loss_track = self.embed_head.loss(bbox_feats, ref_bbox_feats,
num_bbox_per_img,
num_bbox_per_ref_img,
sampling_results, gt_instance_ids,
ref_gt_instance_ids)
losses.update(loss_track)
return losses
def predict(self, roi_feats: Tensor,
prev_roi_feats: Tensor) -> List[Tensor]:
"""Perform forward propagation of the tracking head and predict
tracking results on the features of the upstream network.
Args:
roi_feats (Tensor): Feature map of current images rois.
prev_roi_feats (Tensor): Feature map of previous images rois.
Returns:
list[Tensor]: The predicted similarity_logits of each pair of key
image and reference image.
"""
return self.embed_head.predict(roi_feats, prev_roi_feats)[0]