Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from abc import ABCMeta | |
from typing import List, Optional, Tuple | |
from mmengine.model import BaseModule | |
from torch import Tensor | |
from mmdet.registry import MODELS, TASK_UTILS | |
from mmdet.structures import TrackSampleList | |
from mmdet.structures.bbox import bbox2roi | |
from mmdet.utils import InstanceList | |
class RoITrackHead(BaseModule, metaclass=ABCMeta): | |
"""The roi track head. | |
This module is used in multi-object tracking methods, such as MaskTrack | |
R-CNN. | |
Args: | |
roi_extractor (dict): Configuration of roi extractor. Defaults to None. | |
embed_head (dict): Configuration of embed head. Defaults to None. | |
train_cfg (dict): Configuration when training. Defaults to None. | |
test_cfg (dict): Configuration when testing. Defaults to None. | |
init_cfg (dict): Configuration of initialization. Defaults to None. | |
""" | |
def __init__(self, | |
roi_extractor: Optional[dict] = None, | |
embed_head: Optional[dict] = None, | |
regress_head: Optional[dict] = None, | |
train_cfg: Optional[dict] = None, | |
test_cfg: Optional[dict] = None, | |
init_cfg: Optional[dict] = None, | |
*args, | |
**kwargs): | |
super().__init__(init_cfg=init_cfg) | |
self.train_cfg = train_cfg | |
self.test_cfg = test_cfg | |
if embed_head is not None: | |
self.init_embed_head(roi_extractor, embed_head) | |
if regress_head is not None: | |
raise NotImplementedError('Regression head is not supported yet.') | |
self.init_assigner_sampler() | |
def init_embed_head(self, roi_extractor, embed_head) -> None: | |
"""Initialize ``embed_head``""" | |
self.roi_extractor = MODELS.build(roi_extractor) | |
self.embed_head = MODELS.build(embed_head) | |
def init_assigner_sampler(self) -> None: | |
"""Initialize assigner and sampler.""" | |
self.bbox_assigner = None | |
self.bbox_sampler = None | |
if self.train_cfg: | |
self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner) | |
self.bbox_sampler = TASK_UTILS.build( | |
self.train_cfg.sampler, default_args=dict(context=self)) | |
def with_track(self) -> bool: | |
"""bool: whether the multi-object tracker has an embed head""" | |
return hasattr(self, 'embed_head') and self.embed_head is not None | |
def extract_roi_feats( | |
self, feats: List[Tensor], | |
bboxes: List[Tensor]) -> Tuple[Tuple[Tensor], List[int]]: | |
"""Extract roi features. | |
Args: | |
feats (list[Tensor]): list of multi-level image features. | |
bboxes (list[Tensor]): list of bboxes in sampling result. | |
Returns: | |
tuple[tuple[Tensor], list[int]]: The extracted roi features and | |
the number of bboxes in each image. | |
""" | |
rois = bbox2roi(bboxes) | |
bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs], | |
rois) | |
num_bbox_per_img = [len(bbox) for bbox in bboxes] | |
return bbox_feats, num_bbox_per_img | |
def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor], | |
rpn_results_list: InstanceList, data_samples: TrackSampleList, | |
**kwargs) -> dict: | |
"""Calculate losses from a batch of inputs and data samples. | |
Args: | |
key_feats (list[Tensor]): list of multi-level image features. | |
ref_feats (list[Tensor]): list of multi-level ref_img features. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
data_samples (list[:obj:`TrackDataSample`]): The batch | |
data samples. It usually includes information such | |
as `gt_instance`. | |
Returns: | |
dict: A dictionary of loss components. | |
""" | |
assert self.with_track | |
batch_gt_instances = [] | |
ref_batch_gt_instances = [] | |
batch_gt_instances_ignore = [] | |
gt_instance_ids = [] | |
ref_gt_instance_ids = [] | |
for track_data_sample in data_samples: | |
key_data_sample = track_data_sample.get_key_frames()[0] | |
ref_data_sample = track_data_sample.get_ref_frames()[0] | |
batch_gt_instances.append(key_data_sample.gt_instances) | |
ref_batch_gt_instances.append(ref_data_sample.gt_instances) | |
if 'ignored_instances' in key_data_sample: | |
batch_gt_instances_ignore.append( | |
key_data_sample.ignored_instances) | |
else: | |
batch_gt_instances_ignore.append(None) | |
gt_instance_ids.append(key_data_sample.gt_instances.instances_ids) | |
ref_gt_instance_ids.append( | |
ref_data_sample.gt_instances.instances_ids) | |
losses = dict() | |
num_imgs = len(data_samples) | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None] * num_imgs | |
sampling_results = [] | |
for i in range(num_imgs): | |
rpn_results = rpn_results_list[i] | |
assign_result = self.bbox_assigner.assign( | |
rpn_results, batch_gt_instances[i], | |
batch_gt_instances_ignore[i]) | |
sampling_result = self.bbox_sampler.sample( | |
assign_result, | |
rpn_results, | |
batch_gt_instances[i], | |
feats=[lvl_feat[i][None] for lvl_feat in key_feats]) | |
sampling_results.append(sampling_result) | |
bboxes = [res.bboxes for res in sampling_results] | |
bbox_feats, num_bbox_per_img = self.extract_roi_feats( | |
key_feats, bboxes) | |
# batch_size is 1 | |
ref_gt_bboxes = [ | |
ref_batch_gt_instance.bboxes | |
for ref_batch_gt_instance in ref_batch_gt_instances | |
] | |
ref_bbox_feats, num_bbox_per_ref_img = self.extract_roi_feats( | |
ref_feats, ref_gt_bboxes) | |
loss_track = self.embed_head.loss(bbox_feats, ref_bbox_feats, | |
num_bbox_per_img, | |
num_bbox_per_ref_img, | |
sampling_results, gt_instance_ids, | |
ref_gt_instance_ids) | |
losses.update(loss_track) | |
return losses | |
def predict(self, roi_feats: Tensor, | |
prev_roi_feats: Tensor) -> List[Tensor]: | |
"""Perform forward propagation of the tracking head and predict | |
tracking results on the features of the upstream network. | |
Args: | |
roi_feats (Tensor): Feature map of current images rois. | |
prev_roi_feats (Tensor): Feature map of previous images rois. | |
Returns: | |
list[Tensor]: The predicted similarity_logits of each pair of key | |
image and reference image. | |
""" | |
return self.embed_head.predict(roi_feats, prev_roi_feats)[0] | |