TTP / mmdet /models /tracking_heads /roi_embed_head.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
from collections import defaultdict
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from torch import Tensor
from torch.nn.modules.utils import _pair
from mmdet.models.losses import accuracy
from mmdet.models.task_modules import SamplingResult
from mmdet.models.task_modules.tracking import embed_similarity
from mmdet.registry import MODELS
@MODELS.register_module()
class RoIEmbedHead(BaseModule):
"""The roi embed head.
This module is used in multi-object tracking methods, such as MaskTrack
R-CNN.
Args:
num_convs (int): The number of convoluational layers to embed roi
features. Defaults to 0.
num_fcs (int): The number of fully connection layers to embed roi
features. Defaults to 0.
roi_feat_size (int|tuple(int)): The spatial size of roi features.
Defaults to 7.
in_channels (int): The input channel of roi features. Defaults to 256.
conv_out_channels (int): The output channel of roi features after
forwarding convoluational layers. Defaults to 256.
with_avg_pool (bool): Whether use average pooling before passing roi
features into fully connection layers. Defaults to False.
fc_out_channels (int): The output channel of roi features after
forwarding fully connection layers. Defaults to 1024.
conv_cfg (dict): Config dict for convolution layer. Defaults to None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer. Defaults to None.
loss_match (dict): The loss function. Defaults to
dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)
init_cfg (dict): Configuration of initialization. Defaults to None.
"""
def __init__(self,
num_convs: int = 0,
num_fcs: int = 0,
roi_feat_size: int = 7,
in_channels: int = 256,
conv_out_channels: int = 256,
with_avg_pool: bool = False,
fc_out_channels: int = 1024,
conv_cfg: Optional[dict] = None,
norm_cfg: Optional[dict] = None,
loss_match: dict = dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
init_cfg: Optional[dict] = None,
**kwargs):
super(RoIEmbedHead, self).__init__(init_cfg=init_cfg)
self.num_convs = num_convs
self.num_fcs = num_fcs
self.roi_feat_size = _pair(roi_feat_size)
self.roi_feat_area = self.roi_feat_size[0] * self.roi_feat_size[1]
self.in_channels = in_channels
self.conv_out_channels = conv_out_channels
self.with_avg_pool = with_avg_pool
self.fc_out_channels = fc_out_channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.loss_match = MODELS.build(loss_match)
self.fp16_enabled = False
if self.with_avg_pool:
self.avg_pool = nn.AvgPool2d(self.roi_feat_size)
# add convs and fcs
self.convs, self.fcs, self.last_layer_dim = self._add_conv_fc_branch(
self.num_convs, self.num_fcs, self.in_channels)
self.relu = nn.ReLU(inplace=True)
def _add_conv_fc_branch(
self, num_branch_convs: int, num_branch_fcs: int,
in_channels: int) -> Tuple[nn.ModuleList, nn.ModuleList, int]:
"""Add shared or separable branch.
convs -> avg pool (optional) -> fcs
"""
last_layer_dim = in_channels
# add branch specific conv layers
branch_convs = nn.ModuleList()
if num_branch_convs > 0:
for i in range(num_branch_convs):
conv_in_channels = (
last_layer_dim if i == 0 else self.conv_out_channels)
branch_convs.append(
ConvModule(
conv_in_channels,
self.conv_out_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
last_layer_dim = self.conv_out_channels
# add branch specific fc layers
branch_fcs = nn.ModuleList()
if num_branch_fcs > 0:
if not self.with_avg_pool:
last_layer_dim *= self.roi_feat_area
for i in range(num_branch_fcs):
fc_in_channels = (
last_layer_dim if i == 0 else self.fc_out_channels)
branch_fcs.append(
nn.Linear(fc_in_channels, self.fc_out_channels))
last_layer_dim = self.fc_out_channels
return branch_convs, branch_fcs, last_layer_dim
@property
def custom_activation(self):
return getattr(self.loss_match, 'custom_activation', False)
def extract_feat(self, x: Tensor,
num_x_per_img: List[int]) -> Tuple[Tensor]:
"""Extract feature from the input `x`, and split the output to a list.
Args:
x (Tensor): of shape [N, C, H, W]. N is the number of proposals.
num_x_per_img (list[int]): The `x` contains proposals of
multi-images. `num_x_per_img` denotes the number of proposals
for each image.
Returns:
list[Tensor]: Each Tensor denotes the embed features belonging to
an image in a batch.
"""
if self.num_convs > 0:
for conv in self.convs:
x = conv(x)
if self.num_fcs > 0:
if self.with_avg_pool:
x = self.avg_pool(x)
x = x.flatten(1)
for fc in self.fcs:
x = self.relu(fc(x))
else:
x = x.flatten(1)
x_split = torch.split(x, num_x_per_img, dim=0)
return x_split
def forward(
self, x: Tensor, ref_x: Tensor, num_x_per_img: List[int],
num_x_per_ref_img: List[int]
) -> Tuple[Tuple[Tensor], Tuple[Tensor]]:
"""Computing the similarity scores between `x` and `ref_x`.
Args:
x (Tensor): of shape [N, C, H, W]. N is the number of key frame
proposals.
ref_x (Tensor): of shape [M, C, H, W]. M is the number of reference
frame proposals.
num_x_per_img (list[int]): The `x` contains proposals of
multi-images. `num_x_per_img` denotes the number of proposals
for each key image.
num_x_per_ref_img (list[int]): The `ref_x` contains proposals of
multi-images. `num_x_per_ref_img` denotes the number of
proposals for each reference image.
Returns:
tuple[tuple[Tensor], tuple[Tensor]]: Each tuple of tensor denotes
the embed features belonging to an image in a batch.
"""
x_split = self.extract_feat(x, num_x_per_img)
ref_x_split = self.extract_feat(ref_x, num_x_per_ref_img)
return x_split, ref_x_split
def get_targets(self, sampling_results: List[SamplingResult],
gt_instance_ids: List[Tensor],
ref_gt_instance_ids: List[Tensor]) -> Tuple[List, List]:
"""Calculate the ground truth for all samples in a batch according to
the sampling_results.
Args:
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes of
all images in a batch, each tensor has shape (num_gt, ).
ref_gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes
of all reference images in a batch, each tensor has shape
(num_gt, ).
Returns:
Tuple[list[Tensor]]: Ground truth for proposals in a batch.
Containing the following list of Tensors:
- track_id_targets (list[Tensor]): The instance ids of
Gt_labels for all proposals in a batch, each tensor in list
has shape (num_proposals,).
- track_id_weights (list[Tensor]): Labels_weights for
all proposals in a batch, each tensor in list has
shape (num_proposals,).
"""
track_id_targets = []
track_id_weights = []
for res, gt_instance_id, ref_gt_instance_id in zip(
sampling_results, gt_instance_ids, ref_gt_instance_ids):
pos_instance_ids = gt_instance_id[res.pos_assigned_gt_inds]
pos_match_id = gt_instance_id.new_zeros(len(pos_instance_ids))
for i, id in enumerate(pos_instance_ids):
if id in ref_gt_instance_id:
pos_match_id[i] = ref_gt_instance_id.tolist().index(id) + 1
track_id_target = gt_instance_id.new_zeros(
len(res.bboxes), dtype=torch.int64)
track_id_target[:len(res.pos_bboxes)] = pos_match_id
track_id_weight = res.bboxes.new_zeros(len(res.bboxes))
track_id_weight[:len(res.pos_bboxes)] = 1.0
track_id_targets.append(track_id_target)
track_id_weights.append(track_id_weight)
return track_id_targets, track_id_weights
def loss(
self,
bbox_feats: Tensor,
ref_bbox_feats: Tensor,
num_bbox_per_img: int,
num_bbox_per_ref_img: int,
sampling_results: List[SamplingResult],
gt_instance_ids: List[Tensor],
ref_gt_instance_ids: List[Tensor],
reduction_override: Optional[str] = None,
) -> dict:
"""Calculate the loss in a batch.
Args:
bbox_feats (Tensor): of shape [N, C, H, W]. N is the number of
bboxes.
ref_bbox_feats (Tensor): of shape [M, C, H, W]. M is the number of
reference bboxes.
num_bbox_per_img (list[int]): The `bbox_feats` contains proposals
of multi-images. `num_bbox_per_img` denotes the number of
proposals for each key image.
num_bbox_per_ref_img (list[int]): The `ref_bbox_feats` contains
proposals of multi-images. `num_bbox_per_ref_img` denotes the
number of proposals for each reference image.
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes of
all images in a batch, each tensor has shape (num_gt, ).
ref_gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes
of all reference images in a batch, each tensor has shape
(num_gt, ).
reduction_override (str, optional): The method used to reduce the
loss. Options are "none", "mean" and "sum".
Returns:
dict[str, Tensor]: a dictionary of loss components.
"""
x_split, ref_x_split = self(bbox_feats, ref_bbox_feats,
num_bbox_per_img, num_bbox_per_ref_img)
losses = self.loss_by_feat(x_split, ref_x_split, sampling_results,
gt_instance_ids, ref_gt_instance_ids,
reduction_override)
return losses
def loss_by_feat(self,
x_split: Tuple[Tensor],
ref_x_split: Tuple[Tensor],
sampling_results: List[SamplingResult],
gt_instance_ids: List[Tensor],
ref_gt_instance_ids: List[Tensor],
reduction_override: Optional[str] = None) -> dict:
"""Calculate losses.
Args:
x_split (Tensor): The embed features belonging to key image.
ref_x_split (Tensor): The embed features belonging to ref image.
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes of
all images in a batch, each tensor has shape (num_gt, ).
ref_gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes
of all reference images in a batch, each tensor has shape
(num_gt, ).
reduction_override (str, optional): The method used to reduce the
loss. Options are "none", "mean" and "sum".
Returns:
dict[str, Tensor]: a dictionary of loss components.
"""
track_id_targets, track_id_weights = self.get_targets(
sampling_results, gt_instance_ids, ref_gt_instance_ids)
assert isinstance(track_id_targets, list)
assert isinstance(track_id_weights, list)
assert len(track_id_weights) == len(track_id_targets)
losses = defaultdict(list)
similarity_logits = []
for one_x, one_ref_x in zip(x_split, ref_x_split):
similarity_logit = embed_similarity(
one_x, one_ref_x, method='dot_product')
dummy = similarity_logit.new_zeros(one_x.shape[0], 1)
similarity_logit = torch.cat((dummy, similarity_logit), dim=1)
similarity_logits.append(similarity_logit)
assert isinstance(similarity_logits, list)
assert len(similarity_logits) == len(track_id_targets)
for similarity_logit, track_id_target, track_id_weight in zip(
similarity_logits, track_id_targets, track_id_weights):
avg_factor = max(torch.sum(track_id_target > 0).float().item(), 1.)
if similarity_logit.numel() > 0:
loss_match = self.loss_match(
similarity_logit,
track_id_target,
track_id_weight,
avg_factor=avg_factor,
reduction_override=reduction_override)
if isinstance(loss_match, dict):
for key, value in loss_match.items():
losses[key].append(value)
else:
losses['loss_match'].append(loss_match)
valid_index = track_id_weight > 0
valid_similarity_logit = similarity_logit[valid_index]
valid_track_id_target = track_id_target[valid_index]
if self.custom_activation:
match_accuracy = self.loss_match.get_accuracy(
valid_similarity_logit, valid_track_id_target)
for key, value in match_accuracy.items():
losses[key].append(value)
else:
losses['match_accuracy'].append(
accuracy(valid_similarity_logit,
valid_track_id_target))
for key, value in losses.items():
losses[key] = sum(losses[key]) / len(similarity_logits)
return losses
def predict(self, roi_feats: Tensor,
prev_roi_feats: Tensor) -> List[Tensor]:
"""Perform forward propagation of the tracking head and predict
tracking results on the features of the upstream network.
Args:
roi_feats (Tensor): Feature map of current images rois.
prev_roi_feats (Tensor): Feature map of previous images rois.
Returns:
list[Tensor]: The predicted similarity_logits of each pair of key
image and reference image.
"""
x_split, ref_x_split = self(roi_feats, prev_roi_feats,
[roi_feats.shape[0]],
[prev_roi_feats.shape[0]])
similarity_logits = self.predict_by_feat(x_split, ref_x_split)
return similarity_logits
def predict_by_feat(self, x_split: Tuple[Tensor],
ref_x_split: Tuple[Tensor]) -> List[Tensor]:
"""Get similarity_logits.
Args:
x_split (Tensor): The embed features belonging to key image.
ref_x_split (Tensor): The embed features belonging to ref image.
Returns:
list[Tensor]: The predicted similarity_logits of each pair of key
image and reference image.
"""
similarity_logits = []
for one_x, one_ref_x in zip(x_split, ref_x_split):
similarity_logit = embed_similarity(
one_x, one_ref_x, method='dot_product')
dummy = similarity_logit.new_zeros(one_x.shape[0], 1)
similarity_logit = torch.cat((dummy, similarity_logit), dim=1)
similarity_logits.append(similarity_logit)
return similarity_logits