Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple | |
import numpy as np | |
import torch | |
from mmengine.structures import InstanceData | |
try: | |
import motmetrics | |
from motmetrics.lap import linear_sum_assignment | |
except ImportError: | |
motmetrics = None | |
from torch import Tensor | |
from mmdet.models.utils import imrenormalize | |
from mmdet.registry import MODELS | |
from mmdet.structures import TrackDataSample | |
from mmdet.structures.bbox import bbox_overlaps, bbox_xyxy_to_cxcyah | |
from mmdet.utils import OptConfigType | |
from .sort_tracker import SORTTracker | |
def cosine_distance(x: Tensor, y: Tensor) -> np.ndarray: | |
"""compute the cosine distance. | |
Args: | |
x (Tensor): embeddings with shape (N,C). | |
y (Tensor): embeddings with shape (M,C). | |
Returns: | |
ndarray: cosine distance with shape (N,M). | |
""" | |
x = x.cpu().numpy() | |
y = y.cpu().numpy() | |
x = x / np.linalg.norm(x, axis=1, keepdims=True) | |
y = y / np.linalg.norm(y, axis=1, keepdims=True) | |
dists = 1. - np.dot(x, y.T) | |
return dists | |
class StrongSORTTracker(SORTTracker): | |
"""Tracker for StrongSORT. | |
Args: | |
obj_score_thr (float, optional): Threshold to filter the objects. | |
Defaults to 0.6. | |
motion (dict): Configuration of motion. Defaults to None. | |
reid (dict, optional): Configuration for the ReID model. | |
- num_samples (int, optional): Number of samples to calculate the | |
feature embeddings of a track. Default to None. | |
- image_scale (tuple, optional): Input scale of the ReID model. | |
Default to (256, 128). | |
- img_norm_cfg (dict, optional): Configuration to normalize the | |
input. Default to None. | |
- match_score_thr (float, optional): Similarity threshold for the | |
matching process. Default to 0.3. | |
- motion_weight (float, optional): the weight of the motion cost. | |
Defaults to 0.02. | |
match_iou_thr (float, optional): Threshold of the IoU matching process. | |
Defaults to 0.7. | |
num_tentatives (int, optional): Number of continuous frames to confirm | |
a track. Defaults to 2. | |
""" | |
def __init__(self, | |
motion: Optional[dict] = None, | |
obj_score_thr: float = 0.6, | |
reid: dict = dict( | |
num_samples=None, | |
img_scale=(256, 128), | |
img_norm_cfg=None, | |
match_score_thr=0.3, | |
motion_weight=0.02), | |
match_iou_thr: float = 0.7, | |
num_tentatives: int = 2, | |
**kwargs): | |
if motmetrics is None: | |
raise RuntimeError('motmetrics is not installed,\ | |
please install it by: pip install motmetrics') | |
super().__init__(motion, obj_score_thr, reid, match_iou_thr, | |
num_tentatives, **kwargs) | |
def update_track(self, id: int, obj: Tuple[Tensor]) -> None: | |
"""Update a track.""" | |
for k, v in zip(self.memo_items, obj): | |
v = v[None] | |
if self.momentums is not None and k in self.momentums: | |
m = self.momentums[k] | |
self.tracks[id][k] = (1 - m) * self.tracks[id][k] + m * v | |
else: | |
self.tracks[id][k].append(v) | |
if self.tracks[id].tentative: | |
if len(self.tracks[id]['bboxes']) >= self.num_tentatives: | |
self.tracks[id].tentative = False | |
bbox = bbox_xyxy_to_cxcyah(self.tracks[id].bboxes[-1]) # size = (1, 4) | |
assert bbox.ndim == 2 and bbox.shape[0] == 1 | |
bbox = bbox.squeeze(0).cpu().numpy() | |
score = float(self.tracks[id].scores[-1].cpu()) | |
self.tracks[id].mean, self.tracks[id].covariance = self.kf.update( | |
self.tracks[id].mean, self.tracks[id].covariance, bbox, score) | |
def track(self, | |
model: torch.nn.Module, | |
img: Tensor, | |
data_sample: TrackDataSample, | |
data_preprocessor: OptConfigType = None, | |
rescale: bool = False, | |
**kwargs) -> InstanceData: | |
"""Tracking forward function. | |
Args: | |
model (nn.Module): MOT model. | |
img (Tensor): of shape (T, C, H, W) encoding input image. | |
Typically these should be mean centered and std scaled. | |
The T denotes the number of key images and usually is 1 in | |
SORT method. | |
feats (list[Tensor]): Multi level feature maps of `img`. | |
data_sample (:obj:`TrackDataSample`): The data sample. | |
It includes information such as `pred_det_instances`. | |
data_preprocessor (dict or ConfigDict, optional): The pre-process | |
config of :class:`TrackDataPreprocessor`. it usually includes, | |
``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. | |
rescale (bool, optional): If True, the bounding boxes should be | |
rescaled to fit the original scale of the image. Defaults to | |
False. | |
Returns: | |
:obj:`InstanceData`: Tracking results of the input images. | |
Each InstanceData usually contains ``bboxes``, ``labels``, | |
``scores`` and ``instances_id``. | |
""" | |
metainfo = data_sample.metainfo | |
bboxes = data_sample.pred_instances.bboxes | |
labels = data_sample.pred_instances.labels | |
scores = data_sample.pred_instances.scores | |
frame_id = metainfo.get('frame_id', -1) | |
if frame_id == 0: | |
self.reset() | |
if not hasattr(self, 'kf'): | |
self.kf = self.motion | |
if self.with_reid: | |
if self.reid.get('img_norm_cfg', False): | |
img_norm_cfg = dict( | |
mean=data_preprocessor.get('mean', [0, 0, 0]), | |
std=data_preprocessor.get('std', [1, 1, 1]), | |
to_bgr=data_preprocessor.get('rgb_to_bgr', False)) | |
reid_img = imrenormalize(img, img_norm_cfg, | |
self.reid['img_norm_cfg']) | |
else: | |
reid_img = img.clone() | |
valid_inds = scores > self.obj_score_thr | |
bboxes = bboxes[valid_inds] | |
labels = labels[valid_inds] | |
scores = scores[valid_inds] | |
if self.empty or bboxes.size(0) == 0: | |
num_new_tracks = bboxes.size(0) | |
ids = torch.arange( | |
self.num_tracks, | |
self.num_tracks + num_new_tracks, | |
dtype=torch.long).to(bboxes.device) | |
self.num_tracks += num_new_tracks | |
if self.with_reid: | |
crops = self.crop_imgs(reid_img, metainfo, bboxes.clone(), | |
rescale) | |
if crops.size(0) > 0: | |
embeds = model.reid(crops, mode='tensor') | |
else: | |
embeds = crops.new_zeros((0, model.reid.head.out_channels)) | |
else: | |
ids = torch.full((bboxes.size(0), ), -1, | |
dtype=torch.long).to(bboxes.device) | |
# motion | |
if model.with_cmc: | |
num_samples = 1 | |
self.tracks = model.cmc.track(self.last_img, img, self.tracks, | |
num_samples, frame_id, metainfo) | |
self.tracks, motion_dists = self.motion.track( | |
self.tracks, bbox_xyxy_to_cxcyah(bboxes)) | |
active_ids = self.confirmed_ids | |
if self.with_reid: | |
crops = self.crop_imgs(reid_img, metainfo, bboxes.clone(), | |
rescale) | |
embeds = model.reid(crops, mode='tensor') | |
# reid | |
if len(active_ids) > 0: | |
track_embeds = self.get( | |
'embeds', | |
active_ids, | |
self.reid.get('num_samples', None), | |
behavior='mean') | |
reid_dists = cosine_distance(track_embeds, embeds) | |
valid_inds = [list(self.ids).index(_) for _ in active_ids] | |
reid_dists[~np.isfinite(motion_dists[ | |
valid_inds, :])] = np.nan | |
weight_motion = self.reid.get('motion_weight') | |
match_dists = (1 - weight_motion) * reid_dists + \ | |
weight_motion * motion_dists[valid_inds] | |
# support multi-class association | |
track_labels = torch.tensor([ | |
self.tracks[id]['labels'][-1] for id in active_ids | |
]).to(bboxes.device) | |
cate_match = labels[None, :] == track_labels[:, None] | |
cate_cost = ((1 - cate_match.int()) * 1e6).cpu().numpy() | |
match_dists = match_dists + cate_cost | |
row, col = linear_sum_assignment(match_dists) | |
for r, c in zip(row, col): | |
dist = match_dists[r, c] | |
if not np.isfinite(dist): | |
continue | |
if dist <= self.reid['match_score_thr']: | |
ids[c] = active_ids[r] | |
active_ids = [ | |
id for id in self.ids if id not in ids | |
and self.tracks[id].frame_ids[-1] == frame_id - 1 | |
] | |
if len(active_ids) > 0: | |
active_dets = torch.nonzero(ids == -1).squeeze(1) | |
track_bboxes = self.get('bboxes', active_ids) | |
ious = bbox_overlaps(track_bboxes, bboxes[active_dets]) | |
# support multi-class association | |
track_labels = torch.tensor([ | |
self.tracks[id]['labels'][-1] for id in active_ids | |
]).to(bboxes.device) | |
cate_match = labels[None, active_dets] == track_labels[:, None] | |
cate_cost = (1 - cate_match.int()) * 1e6 | |
dists = (1 - ious + cate_cost).cpu().numpy() | |
row, col = linear_sum_assignment(dists) | |
for r, c in zip(row, col): | |
dist = dists[r, c] | |
if dist < 1 - self.match_iou_thr: | |
ids[active_dets[c]] = active_ids[r] | |
new_track_inds = ids == -1 | |
ids[new_track_inds] = torch.arange( | |
self.num_tracks, | |
self.num_tracks + new_track_inds.sum(), | |
dtype=torch.long).to(bboxes.device) | |
self.num_tracks += new_track_inds.sum() | |
self.update( | |
ids=ids, | |
bboxes=bboxes, | |
scores=scores, | |
labels=labels, | |
embeds=embeds if self.with_reid else None, | |
frame_ids=frame_id) | |
self.last_img = img | |
# update pred_track_instances | |
pred_track_instances = InstanceData() | |
pred_track_instances.bboxes = bboxes | |
pred_track_instances.labels = labels | |
pred_track_instances.scores = scores | |
pred_track_instances.instances_id = ids | |
return pred_track_instances | |