TTP / mmdet /models /task_modules /tracking /camera_motion_compensation.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
import torch
from torch import Tensor
from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import bbox_cxcyah_to_xyxy, bbox_xyxy_to_cxcyah
@TASK_UTILS.register_module()
class CameraMotionCompensation:
"""Camera motion compensation.
Args:
warp_mode (str): Warp mode in opencv.
Defaults to 'cv2.MOTION_EUCLIDEAN'.
num_iters (int): Number of the iterations. Defaults to 50.
stop_eps (float): Terminate threshold. Defaults to 0.001.
"""
def __init__(self,
warp_mode: str = 'cv2.MOTION_EUCLIDEAN',
num_iters: int = 50,
stop_eps: float = 0.001):
self.warp_mode = eval(warp_mode)
self.num_iters = num_iters
self.stop_eps = stop_eps
def get_warp_matrix(self, img: np.ndarray, ref_img: np.ndarray) -> Tensor:
"""Calculate warping matrix between two images."""
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ref_img = cv2.cvtColor(ref_img, cv2.COLOR_BGR2GRAY)
warp_matrix = np.eye(2, 3, dtype=np.float32)
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
self.num_iters, self.stop_eps)
cc, warp_matrix = cv2.findTransformECC(img, ref_img, warp_matrix,
self.warp_mode, criteria, None,
1)
warp_matrix = torch.from_numpy(warp_matrix)
return warp_matrix
def warp_bboxes(self, bboxes: Tensor, warp_matrix: Tensor) -> Tensor:
"""Warp bounding boxes according to the warping matrix."""
tl, br = bboxes[:, :2], bboxes[:, 2:]
tl = torch.cat((tl, torch.ones(tl.shape[0], 1).to(bboxes.device)),
dim=1)
br = torch.cat((br, torch.ones(tl.shape[0], 1).to(bboxes.device)),
dim=1)
trans_tl = torch.mm(warp_matrix, tl.t()).t()
trans_br = torch.mm(warp_matrix, br.t()).t()
trans_bboxes = torch.cat((trans_tl, trans_br), dim=1)
return trans_bboxes.to(bboxes.device)
def warp_means(self, means: np.ndarray, warp_matrix: Tensor) -> np.ndarray:
"""Warp track.mean according to the warping matrix."""
cxcyah = torch.from_numpy(means[:, :4]).float()
xyxy = bbox_cxcyah_to_xyxy(cxcyah)
warped_xyxy = self.warp_bboxes(xyxy, warp_matrix)
warped_cxcyah = bbox_xyxy_to_cxcyah(warped_xyxy).numpy()
means[:, :4] = warped_cxcyah
return means
def track(self, img: Tensor, ref_img: Tensor, tracks: dict,
num_samples: int, frame_id: int, metainfo: dict) -> dict:
"""Tracking forward."""
img = img.squeeze(0).cpu().numpy().transpose((1, 2, 0))
ref_img = ref_img.squeeze(0).cpu().numpy().transpose((1, 2, 0))
warp_matrix = self.get_warp_matrix(img, ref_img)
# rescale the warp_matrix due to the `resize` in pipeline
scale_factor_h, scale_factor_w = metainfo['scale_factor']
warp_matrix[0, 2] = warp_matrix[0, 2] / scale_factor_w
warp_matrix[1, 2] = warp_matrix[1, 2] / scale_factor_h
bboxes = []
num_bboxes = []
means = []
for k, v in tracks.items():
if int(v['frame_ids'][-1]) < frame_id - 1:
_num = 1
else:
_num = min(num_samples, len(v.bboxes))
num_bboxes.append(_num)
bboxes.extend(v.bboxes[-_num:])
if len(v.mean) > 0:
means.append(v.mean)
bboxes = torch.cat(bboxes, dim=0)
warped_bboxes = self.warp_bboxes(bboxes, warp_matrix.to(bboxes.device))
warped_bboxes = torch.split(warped_bboxes, num_bboxes)
for b, (k, v) in zip(warped_bboxes, tracks.items()):
_num = b.shape[0]
b = torch.split(b, [1] * _num)
tracks[k].bboxes[-_num:] = b
if means:
means = np.asarray(means)
warped_means = self.warp_means(means, warp_matrix)
for m, (k, v) in zip(warped_means, tracks.items()):
tracks[k].mean = m
return tracks