Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import cv2 | |
import numpy as np | |
import torch | |
from torch import Tensor | |
from mmdet.registry import TASK_UTILS | |
from mmdet.structures.bbox import bbox_cxcyah_to_xyxy, bbox_xyxy_to_cxcyah | |
class CameraMotionCompensation: | |
"""Camera motion compensation. | |
Args: | |
warp_mode (str): Warp mode in opencv. | |
Defaults to 'cv2.MOTION_EUCLIDEAN'. | |
num_iters (int): Number of the iterations. Defaults to 50. | |
stop_eps (float): Terminate threshold. Defaults to 0.001. | |
""" | |
def __init__(self, | |
warp_mode: str = 'cv2.MOTION_EUCLIDEAN', | |
num_iters: int = 50, | |
stop_eps: float = 0.001): | |
self.warp_mode = eval(warp_mode) | |
self.num_iters = num_iters | |
self.stop_eps = stop_eps | |
def get_warp_matrix(self, img: np.ndarray, ref_img: np.ndarray) -> Tensor: | |
"""Calculate warping matrix between two images.""" | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
ref_img = cv2.cvtColor(ref_img, cv2.COLOR_BGR2GRAY) | |
warp_matrix = np.eye(2, 3, dtype=np.float32) | |
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, | |
self.num_iters, self.stop_eps) | |
cc, warp_matrix = cv2.findTransformECC(img, ref_img, warp_matrix, | |
self.warp_mode, criteria, None, | |
1) | |
warp_matrix = torch.from_numpy(warp_matrix) | |
return warp_matrix | |
def warp_bboxes(self, bboxes: Tensor, warp_matrix: Tensor) -> Tensor: | |
"""Warp bounding boxes according to the warping matrix.""" | |
tl, br = bboxes[:, :2], bboxes[:, 2:] | |
tl = torch.cat((tl, torch.ones(tl.shape[0], 1).to(bboxes.device)), | |
dim=1) | |
br = torch.cat((br, torch.ones(tl.shape[0], 1).to(bboxes.device)), | |
dim=1) | |
trans_tl = torch.mm(warp_matrix, tl.t()).t() | |
trans_br = torch.mm(warp_matrix, br.t()).t() | |
trans_bboxes = torch.cat((trans_tl, trans_br), dim=1) | |
return trans_bboxes.to(bboxes.device) | |
def warp_means(self, means: np.ndarray, warp_matrix: Tensor) -> np.ndarray: | |
"""Warp track.mean according to the warping matrix.""" | |
cxcyah = torch.from_numpy(means[:, :4]).float() | |
xyxy = bbox_cxcyah_to_xyxy(cxcyah) | |
warped_xyxy = self.warp_bboxes(xyxy, warp_matrix) | |
warped_cxcyah = bbox_xyxy_to_cxcyah(warped_xyxy).numpy() | |
means[:, :4] = warped_cxcyah | |
return means | |
def track(self, img: Tensor, ref_img: Tensor, tracks: dict, | |
num_samples: int, frame_id: int, metainfo: dict) -> dict: | |
"""Tracking forward.""" | |
img = img.squeeze(0).cpu().numpy().transpose((1, 2, 0)) | |
ref_img = ref_img.squeeze(0).cpu().numpy().transpose((1, 2, 0)) | |
warp_matrix = self.get_warp_matrix(img, ref_img) | |
# rescale the warp_matrix due to the `resize` in pipeline | |
scale_factor_h, scale_factor_w = metainfo['scale_factor'] | |
warp_matrix[0, 2] = warp_matrix[0, 2] / scale_factor_w | |
warp_matrix[1, 2] = warp_matrix[1, 2] / scale_factor_h | |
bboxes = [] | |
num_bboxes = [] | |
means = [] | |
for k, v in tracks.items(): | |
if int(v['frame_ids'][-1]) < frame_id - 1: | |
_num = 1 | |
else: | |
_num = min(num_samples, len(v.bboxes)) | |
num_bboxes.append(_num) | |
bboxes.extend(v.bboxes[-_num:]) | |
if len(v.mean) > 0: | |
means.append(v.mean) | |
bboxes = torch.cat(bboxes, dim=0) | |
warped_bboxes = self.warp_bboxes(bboxes, warp_matrix.to(bboxes.device)) | |
warped_bboxes = torch.split(warped_bboxes, num_bboxes) | |
for b, (k, v) in zip(warped_bboxes, tracks.items()): | |
_num = b.shape[0] | |
b = torch.split(b, [1] * _num) | |
tracks[k].bboxes[-_num:] = b | |
if means: | |
means = np.asarray(means) | |
warped_means = self.warp_means(means, warp_matrix) | |
for m, (k, v) in zip(warped_means, tracks.items()): | |
tracks[k].mean = m | |
return tracks | |