TTP / mmdet /models /dense_heads /ddq_detr_head.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Tuple
import torch
from mmengine.model import bias_init_with_prob, constant_init
from torch import Tensor, nn
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
from ..layers import inverse_sigmoid
from ..losses import DDQAuxLoss
from ..utils import multi_apply
from .dino_head import DINOHead
@MODELS.register_module()
class DDQDETRHead(DINOHead):
r"""Head of DDQDETR: Dense Distinct Query for
End-to-End Object Detection.
Code is modified from the `official github repo
<https://github.com/jshilong/DDQ>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2303.12776>`_ .
Args:
aux_num_pos (int): Number of positive targets assigned to a
perdicted object. Defaults to 4.
"""
def __init__(self, *args, aux_num_pos=4, **kwargs):
super(DDQDETRHead, self).__init__(*args, **kwargs)
self.aux_loss_for_dense = DDQAuxLoss(
train_cfg=dict(
assigner=dict(type='TopkHungarianAssigner', topk=aux_num_pos),
alpha=1,
beta=6))
def _init_layers(self) -> None:
"""Initialize classification branch and regression branch of aux head
for dense queries."""
super(DDQDETRHead, self)._init_layers()
# If decoder `num_layers` = 6 and `as_two_stage` = True, then:
# 1) 6 main heads are required for
# each decoder output of distinct queries.
# 2) 1 main head is required for `output_memory` of distinct queries.
# 3) 1 aux head is required for `output_memory` of dense queries,
# which is done by code below this comment.
# So 8 heads are required in sum.
# aux head for dense queries on encoder feature map
self.cls_branches.append(copy.deepcopy(self.cls_branches[-1]))
self.reg_branches.append(copy.deepcopy(self.reg_branches[-1]))
# If decoder `num_layers` = 6 and `as_two_stage` = True, then:
# 6 aux heads are required for each decoder output of dense queries.
# So 8 + 6 = 14 heads and heads are requires in sum.
# self.num_pred_layer is 7
# aux head for dense queries in decoder
self.aux_cls_branches = nn.ModuleList([
copy.deepcopy(self.cls_branches[-1])
for _ in range(self.num_pred_layer - 1)
])
self.aux_reg_branches = nn.ModuleList([
copy.deepcopy(self.reg_branches[-1])
for _ in range(self.num_pred_layer - 1)
])
def init_weights(self) -> None:
"""Initialize weights of the Deformable DETR head."""
bias_init = bias_init_with_prob(0.01)
for m in self.cls_branches:
nn.init.constant_(m.bias, bias_init)
for m in self.aux_cls_branches:
nn.init.constant_(m.bias, bias_init)
for m in self.reg_branches:
constant_init(m[-1], 0, bias=0)
for m in self.reg_branches:
nn.init.constant_(m[-1].bias.data[2:], 0.0)
for m in self.aux_reg_branches:
constant_init(m[-1], 0, bias=0)
for m in self.aux_reg_branches:
nn.init.constant_(m[-1].bias.data[2:], 0.0)
def forward(self, hidden_states: Tensor,
references: List[Tensor]) -> Tuple[Tensor]:
"""Forward function.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries_total,
dim), where `num_queries_total` is the sum of
`num_denoising_queries`, `num_queries` and `num_dense_queries`
when `self.training` is `True`, else `num_queries`.
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). Each reference has shape (bs,
num_queries_total, 4) with the last dimension arranged as
(cx, cy, w, h).
Returns:
tuple[Tensor]: results of head containing the following tensors.
- all_layers_outputs_classes (Tensor): Outputs from the
classification head, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels).
- all_layers_outputs_coords (Tensor): Sigmoid outputs from the
regression head with normalized coordinate format (cx, cy, w,
h), has shape (num_decoder_layers, bs, num_queries_total, 4)
with the last dimension arranged as (cx, cy, w, h).
"""
all_layers_outputs_classes = []
all_layers_outputs_coords = []
if self.training:
num_dense = self.cache_dict['num_dense_queries']
for layer_id in range(hidden_states.shape[0]):
reference = inverse_sigmoid(references[layer_id])
hidden_state = hidden_states[layer_id]
if self.training:
dense_hidden_state = hidden_state[:, -num_dense:]
hidden_state = hidden_state[:, :-num_dense]
outputs_class = self.cls_branches[layer_id](hidden_state)
tmp_reg_preds = self.reg_branches[layer_id](hidden_state)
if self.training:
dense_outputs_class = self.aux_cls_branches[layer_id](
dense_hidden_state)
dense_tmp_reg_preds = self.aux_reg_branches[layer_id](
dense_hidden_state)
outputs_class = torch.cat([outputs_class, dense_outputs_class],
dim=1)
tmp_reg_preds = torch.cat([tmp_reg_preds, dense_tmp_reg_preds],
dim=1)
if reference.shape[-1] == 4:
tmp_reg_preds += reference
else:
assert reference.shape[-1] == 2
tmp_reg_preds[..., :2] += reference
outputs_coord = tmp_reg_preds.sigmoid()
all_layers_outputs_classes.append(outputs_class)
all_layers_outputs_coords.append(outputs_coord)
all_layers_outputs_classes = torch.stack(all_layers_outputs_classes)
all_layers_outputs_coords = torch.stack(all_layers_outputs_coords)
return all_layers_outputs_classes, all_layers_outputs_coords
def loss(self,
hidden_states: Tensor,
references: List[Tensor],
enc_outputs_class: Tensor,
enc_outputs_coord: Tensor,
batch_data_samples: SampleList,
dn_meta: Dict[str, int],
aux_enc_outputs_class=None,
aux_enc_outputs_coord=None) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries_total,
dim), where `num_queries_total` is the sum of
`num_denoising_queries`, `num_queries` and `num_dense_queries`
when `self.training` is `True`, else `num_queries`.
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). Each reference has shape (bs,
num_queries_total, 4) with the last dimension arranged as
(cx, cy, w, h).
enc_outputs_class (Tensor): The top k classification score of
each point on encoder feature map, has shape (bs, num_queries,
cls_out_channels).
enc_outputs_coord (Tensor): The proposal generated from points
with top k score, has shape (bs, num_queries, 4) with the
last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
aux_enc_outputs_class (Tensor): The `dense_topk` classification
score of each point on encoder feature map, has shape (bs,
num_dense_queries, cls_out_channels).
It is `None` when `self.training` is `False`.
aux_enc_outputs_coord (Tensor): The proposal generated from points
with `dense_topk` score, has shape (bs, num_dense_queries, 4)
with the last dimension arranged as (cx, cy, w, h).
It is `None` when `self.training` is `False`.
Returns:
dict: A dictionary of loss components.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states, references)
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord,
batch_gt_instances, batch_img_metas, dn_meta)
losses = self.loss_by_feat(*loss_inputs)
aux_enc_outputs_coord = bbox_cxcywh_to_xyxy(aux_enc_outputs_coord)
aux_enc_outputs_coord_list = []
for img_id in range(len(aux_enc_outputs_coord)):
det_bboxes = aux_enc_outputs_coord[img_id]
img_shape = batch_img_metas[img_id]['img_shape']
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
aux_enc_outputs_coord_list.append(det_bboxes)
aux_enc_outputs_coord = torch.stack(aux_enc_outputs_coord_list)
aux_loss = self.aux_loss_for_dense.loss(
aux_enc_outputs_class.sigmoid(), aux_enc_outputs_coord,
[item.bboxes for item in batch_gt_instances],
[item.labels for item in batch_gt_instances], batch_img_metas)
for k, v in aux_loss.items():
losses[f'aux_enc_{k}'] = v
return losses
def loss_by_feat(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
enc_cls_scores: Tensor,
enc_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
dn_meta: Dict[str, int],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries_total, cls_out_channels).
all_layers_bbox_preds (Tensor): Bbox coordinates of all decoder
layers. Each has shape (num_decoder_layers, bs,
num_queries_total, 4) with normalized coordinate format
(cx, cy, w, h).
enc_cls_scores (Tensor): The top k score of each point on
encoder feature map, has shape (bs, num_queries,
cls_out_channels).
enc_bbox_preds (Tensor): The proposal generated from points
with top k score, has shape (bs, num_queries, 4) with the
last dimension arranged as (cx, cy, w, h).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
dn_meta (Dict[str, int]): The dictionary saves information about
group collation, including 'num_denoising_queries' and
'num_denoising_groups'. It will be used for split outputs of
denoising and matching parts and loss calculation.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
(all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \
self.split_outputs(
all_layers_cls_scores, all_layers_bbox_preds, dn_meta)
num_dense_queries = dn_meta['num_dense_queries']
num_layer = all_layers_matching_bbox_preds.size(0)
dense_all_layers_matching_cls_scores = all_layers_matching_cls_scores[:, :, # noqa: E501
-num_dense_queries:] # noqa: E501
dense_all_layers_matching_bbox_preds = all_layers_matching_bbox_preds[:, :, # noqa: E501
-num_dense_queries:] # noqa: E501
all_layers_matching_cls_scores = all_layers_matching_cls_scores[:, :, : # noqa: E501
-num_dense_queries] # noqa: E501
all_layers_matching_bbox_preds = all_layers_matching_bbox_preds[:, :, : # noqa: E501
-num_dense_queries] # noqa: E501
loss_dict = self.loss_for_distinct_queries(
all_layers_matching_cls_scores, all_layers_matching_bbox_preds,
batch_gt_instances, batch_img_metas, batch_gt_instances_ignore)
if enc_cls_scores is not None:
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
self.loss_by_feat_single(
enc_cls_scores, enc_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas)
loss_dict['enc_loss_cls'] = enc_loss_cls
loss_dict['enc_loss_bbox'] = enc_losses_bbox
loss_dict['enc_loss_iou'] = enc_losses_iou
if all_layers_denoising_cls_scores is not None:
dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn(
all_layers_denoising_cls_scores,
all_layers_denoising_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas,
dn_meta=dn_meta)
loss_dict['dn_loss_cls'] = dn_losses_cls[-1]
loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1]
loss_dict['dn_loss_iou'] = dn_losses_iou[-1]
for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \
enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1],
dn_losses_iou[:-1])):
loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i
loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i
for l_id in range(num_layer):
cls_scores = dense_all_layers_matching_cls_scores[l_id].sigmoid()
bbox_preds = dense_all_layers_matching_bbox_preds[l_id]
bbox_preds = bbox_cxcywh_to_xyxy(bbox_preds)
bbox_preds_list = []
for img_id in range(len(bbox_preds)):
det_bboxes = bbox_preds[img_id]
img_shape = batch_img_metas[img_id]['img_shape']
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
bbox_preds_list.append(det_bboxes)
bbox_preds = torch.stack(bbox_preds_list)
aux_loss = self.aux_loss_for_dense.loss(
cls_scores, bbox_preds,
[item.bboxes for item in batch_gt_instances],
[item.labels for item in batch_gt_instances], batch_img_metas)
for k, v in aux_loss.items():
loss_dict[f'{l_id}_aux_{k}'] = v
return loss_dict
def loss_for_distinct_queries(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Calculate the loss of distinct queries, that is, excluding denoising
and dense queries. Only select the distinct queries in decoder for
loss.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor): Bbox coordinates of all decoder
layers. It has shape (num_decoder_layers, bs,
num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert batch_gt_instances_ignore is None, \
f'{self.__class__.__name__} only supports ' \
'for batch_gt_instances_ignore setting to None.'
losses_cls, losses_bbox, losses_iou = multi_apply(
self._loss_for_distinct_queries_single,
all_layers_cls_scores,
all_layers_bbox_preds,
[i for i in range(len(all_layers_bbox_preds))],
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas)
loss_dict = dict()
# loss from the last decoder layer
loss_dict['loss_cls'] = losses_cls[-1]
loss_dict['loss_bbox'] = losses_bbox[-1]
loss_dict['loss_iou'] = losses_iou[-1]
# loss from other decoder layers
num_dec_layer = 0
for loss_cls_i, loss_bbox_i, loss_iou_i in \
zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]):
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
num_dec_layer += 1
return loss_dict
def _loss_for_distinct_queries_single(self, cls_scores, bbox_preds, l_id,
batch_gt_instances, batch_img_metas):
"""Calculate the loss for outputs from a single decoder layer of
distinct queries, that is, excluding denoising and dense queries. Only
select the distinct queries in decoder for loss.
Args:
cls_scores (Tensor): Classification scores of a single
decoder layer, has shape (bs, num_queries, cls_out_channels).
bbox_preds (Tensor): Bbox coordinates of a single decoder
layer. It has shape (bs, num_queries, 4) with the last
dimension arranged as (cx, cy, w, h).
l_id (int): Decoder layer index for these outputs.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
num_imgs = cls_scores.size(0)
if 0 < l_id:
batch_mask = [
self.cache_dict['distinct_query_mask'][l_id - 1][
img_id * self.cache_dict['num_heads']][0]
for img_id in range(num_imgs)
]
else:
batch_mask = [
torch.ones(len(cls_scores[i]),
device=cls_scores.device).bool()
for i in range(num_imgs)
]
# only select the distinct queries in decoder for loss
cls_scores_list = [
cls_scores[i][batch_mask[i]] for i in range(num_imgs)
]
bbox_preds_list = [
bbox_preds[i][batch_mask[i]] for i in range(num_imgs)
]
cls_scores = torch.cat(cls_scores_list)
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
batch_gt_instances, batch_img_metas)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.cat(labels_list, 0)
label_weights = torch.cat(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# classification loss
cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = num_total_pos * 1.0 + \
num_total_neg * self.bg_cls_weight
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
loss_cls = self.loss_cls(
cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# construct factors used for rescale bboxes
factors = []
for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds_list):
img_h, img_w, = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0).repeat(
bbox_pred.size(0), 1)
factors.append(factor)
factors = torch.cat(factors, 0)
# DETR regress the relative position of boxes (cxcywh) in the image,
# thus the learning target is normalized by the image size. So here
# we need to re-scale them for calculating IoU loss
bbox_preds = torch.cat(bbox_preds_list)
bbox_preds = bbox_preds.reshape(-1, 4)
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
# regression IoU loss, defaultly GIoU loss
loss_iou = self.loss_iou(
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
# regression L1 loss
loss_bbox = self.loss_bbox(
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
return loss_cls, loss_bbox, loss_iou
def predict_by_feat(self,
layer_cls_scores: Tensor,
layer_bbox_preds: Tensor,
batch_img_metas: List[dict],
rescale: bool = True) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Args:
layer_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs,
num_queries, cls_out_channels).
layer_bbox_preds (Tensor): Bbox coordinates of all decoder layers.
Each has shape (num_decoder_layers, bs, num_queries, 4)
with normalized coordinate format (cx, cy, w, h).
batch_img_metas (list[dict]): Meta information of each image.
rescale (bool, optional): If `True`, return boxes in original
image space. Default `False`.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
cls_scores = layer_cls_scores[-1]
bbox_preds = layer_bbox_preds[-1]
num_imgs = cls_scores.size(0)
# -1 is last layer input query mask
batch_mask = [
self.cache_dict['distinct_query_mask'][-1][
img_id * self.cache_dict['num_heads']][0]
for img_id in range(num_imgs)
]
result_list = []
for img_id in range(len(batch_img_metas)):
cls_score = cls_scores[img_id][batch_mask[img_id]]
bbox_pred = bbox_preds[img_id][batch_mask[img_id]]
img_meta = batch_img_metas[img_id]
results = self._predict_by_feat_single(cls_score, bbox_pred,
img_meta, rescale)
result_list.append(results)
return result_list