TTP / mmdet /datasets /samplers /track_img_sampler.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import math
import random
from typing import Iterator, Optional, Sized
import numpy as np
from mmengine.dataset import ClassBalancedDataset, ConcatDataset
from mmengine.dist import get_dist_info, sync_random_seed
from torch.utils.data import Sampler
from mmdet.registry import DATA_SAMPLERS
from ..base_video_dataset import BaseVideoDataset
@DATA_SAMPLERS.register_module()
class TrackImgSampler(Sampler):
"""Sampler that providing image-level sampling outputs for video datasets
in tracking tasks. It could be both used in both distributed and
non-distributed environment.
If using the default sampler in pytorch, the subsequent data receiver will
get one video, which is not desired in some cases:
(Take a non-distributed environment as an example)
1. In test mode, we want only one image is fed into the data pipeline. This
is in consideration of memory usage since feeding the whole video commonly
requires a large amount of memory (>=20G on MOTChallenge17 dataset), which
is not available in some machines.
2. In training mode, we may want to make sure all the images in one video
are randomly sampled once in one epoch and this can not be guaranteed in
the default sampler in pytorch.
Args:
dataset (Sized): Dataset used for sampling.
seed (int, optional): random seed used to shuffle the sampler. This
number should be identical across all processes in the distributed
group. Defaults to None.
"""
def __init__(
self,
dataset: Sized,
seed: Optional[int] = None,
) -> None:
rank, world_size = get_dist_info()
self.rank = rank
self.world_size = world_size
self.epoch = 0
if seed is None:
self.seed = sync_random_seed()
else:
self.seed = seed
self.dataset = dataset
self.indices = []
# Hard code here to handle different dataset wrapper
if isinstance(self.dataset, ConcatDataset):
cat_datasets = self.dataset.datasets
assert isinstance(
cat_datasets[0], BaseVideoDataset
), f'expected BaseVideoDataset, but got {type(cat_datasets[0])}'
self.test_mode = cat_datasets[0].test_mode
assert not self.test_mode, "'ConcatDataset' should not exist in "
'test mode'
for dataset in cat_datasets:
num_videos = len(dataset)
for video_ind in range(num_videos):
self.indices.extend([
(video_ind, frame_ind) for frame_ind in range(
dataset.get_len_per_video(video_ind))
])
elif isinstance(self.dataset, ClassBalancedDataset):
ori_dataset = self.dataset.dataset
assert isinstance(
ori_dataset, BaseVideoDataset
), f'expected BaseVideoDataset, but got {type(ori_dataset)}'
self.test_mode = ori_dataset.test_mode
assert not self.test_mode, "'ClassBalancedDataset' should not "
'exist in test mode'
video_indices = self.dataset.repeat_indices
for index in video_indices:
self.indices.extend([(index, frame_ind) for frame_ind in range(
ori_dataset.get_len_per_video(index))])
else:
assert isinstance(
self.dataset, BaseVideoDataset
), 'TrackImgSampler is only supported in BaseVideoDataset or '
'dataset wrapper: ClassBalancedDataset and ConcatDataset, but '
f'got {type(self.dataset)} '
self.test_mode = self.dataset.test_mode
num_videos = len(self.dataset)
if self.test_mode:
# in test mode, the images belong to the same video must be put
# on the same device.
if num_videos < self.world_size:
raise ValueError(f'only {num_videos} videos loaded,'
f'but {self.world_size} gpus were given.')
chunks = np.array_split(
list(range(num_videos)), self.world_size)
for videos_inds in chunks:
indices_chunk = []
for video_ind in videos_inds:
indices_chunk.extend([
(video_ind, frame_ind) for frame_ind in range(
self.dataset.get_len_per_video(video_ind))
])
self.indices.append(indices_chunk)
else:
for video_ind in range(num_videos):
self.indices.extend([
(video_ind, frame_ind) for frame_ind in range(
self.dataset.get_len_per_video(video_ind))
])
if self.test_mode:
self.num_samples = len(self.indices[self.rank])
self.total_size = sum(
[len(index_list) for index_list in self.indices])
else:
self.num_samples = int(
math.ceil(len(self.indices) * 1.0 / self.world_size))
self.total_size = self.num_samples * self.world_size
def __iter__(self) -> Iterator:
if self.test_mode:
# in test mode, the order of frames can not be shuffled.
indices = self.indices[self.rank]
else:
# deterministically shuffle based on epoch
rng = random.Random(self.epoch + self.seed)
indices = rng.sample(self.indices, len(self.indices))
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.world_size]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch