Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa | |
# mmcv >= 2.0.1 | |
# mmengine >= 0.8.0 | |
from mmengine.config import read_base | |
with read_base(): | |
from .rtmdet_ins_l_8xb32_300e_coco import * | |
from mmcv.transforms.loading import LoadImageFromFile | |
from mmcv.transforms.processing import RandomResize | |
from mmengine.hooks.ema_hook import EMAHook | |
from mmdet.datasets.transforms.formatting import PackDetInputs | |
from mmdet.datasets.transforms.loading import (FilterAnnotations, | |
LoadAnnotations) | |
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic, | |
Pad, RandomCrop, RandomFlip, | |
Resize, YOLOXHSVRandomAug) | |
from mmdet.engine.hooks.pipeline_switch_hook import PipelineSwitchHook | |
from mmdet.models.layers.ema import ExpMomentumEMA | |
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa | |
model.update( | |
dict( | |
backbone=dict( | |
deepen_factor=0.33, | |
widen_factor=0.5, | |
init_cfg=dict( | |
type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), | |
neck=dict( | |
in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1), | |
bbox_head=dict(in_channels=128, feat_channels=128))) | |
train_pipeline = [ | |
dict(type=LoadImageFromFile, backend_args=backend_args), | |
dict( | |
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False), | |
dict(type=CachedMosaic, img_scale=(640, 640), pad_val=114.0), | |
dict( | |
type=RandomResize, | |
scale=(1280, 1280), | |
ratio_range=(0.5, 2.0), | |
resize_type=Resize, | |
keep_ratio=True), | |
dict( | |
type=RandomCrop, | |
crop_size=(640, 640), | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type=YOLOXHSVRandomAug), | |
dict(type=RandomFlip, prob=0.5), | |
dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))), | |
dict( | |
type=CachedMixUp, | |
img_scale=(640, 640), | |
ratio_range=(1.0, 1.0), | |
max_cached_images=20, | |
pad_val=(114, 114, 114)), | |
dict(type=FilterAnnotations, min_gt_bbox_wh=(1, 1)), | |
dict(type=PackDetInputs) | |
] | |
train_pipeline_stage2 = [ | |
dict(type=LoadImageFromFile, backend_args=backend_args), | |
dict( | |
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False), | |
dict( | |
type=RandomResize, | |
scale=(640, 640), | |
ratio_range=(0.5, 2.0), | |
resize_type=Resize, | |
keep_ratio=True), | |
dict( | |
type=RandomCrop, | |
crop_size=(640, 640), | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type=FilterAnnotations, min_gt_bbox_wh=(1, 1)), | |
dict(type=YOLOXHSVRandomAug), | |
dict(type=RandomFlip, prob=0.5), | |
dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))), | |
dict(type=PackDetInputs) | |
] | |
train_dataloader.update(dict(dataset=dict(pipeline=train_pipeline))) | |
custom_hooks = [ | |
dict( | |
type=EMAHook, | |
ema_type=ExpMomentumEMA, | |
momentum=0.0002, | |
update_buffers=True, | |
priority=49), | |
dict( | |
type=PipelineSwitchHook, | |
switch_epoch=280, | |
switch_pipeline=train_pipeline_stage2) | |
] | |