TTP / mmdet /configs /rtmdet /rtmdet_ins_l_8xb32_300e_coco.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
# mmcv >= 2.0.1
# mmengine >= 0.8.0
from mmengine.config import read_base
with read_base():
from .rtmdet_l_8xb32_300e_coco import *
from mmcv.transforms.loading import LoadImageFromFile
from mmcv.transforms.processing import RandomResize
from mmengine.hooks.ema_hook import EMAHook
from torch.nn.modules.activation import SiLU
from mmdet.datasets.transforms.formatting import PackDetInputs
from mmdet.datasets.transforms.loading import (FilterAnnotations,
LoadAnnotations)
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
Pad, RandomCrop, RandomFlip,
Resize, YOLOXHSVRandomAug)
from mmdet.engine.hooks.pipeline_switch_hook import PipelineSwitchHook
from mmdet.models.dense_heads.rtmdet_ins_head import RTMDetInsSepBNHead
from mmdet.models.layers.ema import ExpMomentumEMA
from mmdet.models.losses.dice_loss import DiceLoss
from mmdet.models.losses.gfocal_loss import QualityFocalLoss
from mmdet.models.losses.iou_loss import GIoULoss
from mmdet.models.task_modules.coders.distance_point_bbox_coder import \
DistancePointBBoxCoder
from mmdet.models.task_modules.prior_generators.point_generator import \
MlvlPointGenerator
model.merge(
dict(
bbox_head=dict(
_delete_=True,
type=RTMDetInsSepBNHead,
num_classes=80,
in_channels=256,
stacked_convs=2,
share_conv=True,
pred_kernel_size=1,
feat_channels=256,
act_cfg=dict(type=SiLU, inplace=True),
norm_cfg=dict(type='SyncBN', requires_grad=True),
anchor_generator=dict(
type=MlvlPointGenerator, offset=0, strides=[8, 16, 32]),
bbox_coder=dict(type=DistancePointBBoxCoder),
loss_cls=dict(
type=QualityFocalLoss,
use_sigmoid=True,
beta=2.0,
loss_weight=1.0),
loss_bbox=dict(type=GIoULoss, loss_weight=2.0),
loss_mask=dict(
type=DiceLoss, loss_weight=2.0, eps=5e-6, reduction='mean')),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100,
mask_thr_binary=0.5),
))
train_pipeline = [
dict(type=LoadImageFromFile, backend_args=backend_args),
dict(
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False),
dict(type=CachedMosaic, img_scale=(640, 640), pad_val=114.0),
dict(
type=RandomResize,
scale=(1280, 1280),
ratio_range=(0.1, 2.0),
resize_type=Resize,
keep_ratio=True),
dict(
type=RandomCrop,
crop_size=(640, 640),
recompute_bbox=True,
allow_negative_crop=True),
dict(type=YOLOXHSVRandomAug),
dict(type=RandomFlip, prob=0.5),
dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type=CachedMixUp,
img_scale=(640, 640),
ratio_range=(1.0, 1.0),
max_cached_images=20,
pad_val=(114, 114, 114)),
dict(type=FilterAnnotations, min_gt_bbox_wh=(1, 1)),
dict(type=PackDetInputs)
]
train_dataloader.update(
dict(pin_memory=True, dataset=dict(pipeline=train_pipeline)))
train_pipeline_stage2 = [
dict(type=LoadImageFromFile, backend_args=backend_args),
dict(
type=LoadAnnotations, with_bbox=True, with_mask=True, poly2mask=False),
dict(
type=RandomResize,
scale=(640, 640),
ratio_range=(0.1, 2.0),
resize_type=Resize,
keep_ratio=True),
dict(
type=RandomCrop,
crop_size=(640, 640),
recompute_bbox=True,
allow_negative_crop=True),
dict(type=FilterAnnotations, min_gt_bbox_wh=(1, 1)),
dict(type=YOLOXHSVRandomAug),
dict(type=RandomFlip, prob=0.5),
dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(type=PackDetInputs)
]
custom_hooks = [
dict(
type=EMAHook,
ema_type=ExpMomentumEMA,
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type=PipelineSwitchHook,
switch_epoch=280,
switch_pipeline=train_pipeline_stage2)
]
val_evaluator.update(dict(metric=['bbox', 'segm']))
test_evaluator = val_evaluator