Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| """MMPretrain provides 21 registry nodes to support using modules across | |
| projects. Each node is a child of the root registry in MMEngine. | |
| More details can be found at | |
| https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. | |
| """ | |
| from mmengine.registry import DATA_SAMPLERS as MMENGINE_DATA_SAMPLERS | |
| from mmengine.registry import DATASETS as MMENGINE_DATASETS | |
| from mmengine.registry import EVALUATOR as MMENGINE_EVALUATOR | |
| from mmengine.registry import HOOKS as MMENGINE_HOOKS | |
| from mmengine.registry import LOG_PROCESSORS as MMENGINE_LOG_PROCESSORS | |
| from mmengine.registry import LOOPS as MMENGINE_LOOPS | |
| from mmengine.registry import METRICS as MMENGINE_METRICS | |
| from mmengine.registry import MODEL_WRAPPERS as MMENGINE_MODEL_WRAPPERS | |
| from mmengine.registry import MODELS as MMENGINE_MODELS | |
| from mmengine.registry import \ | |
| OPTIM_WRAPPER_CONSTRUCTORS as MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS | |
| from mmengine.registry import OPTIM_WRAPPERS as MMENGINE_OPTIM_WRAPPERS | |
| from mmengine.registry import OPTIMIZERS as MMENGINE_OPTIMIZERS | |
| from mmengine.registry import PARAM_SCHEDULERS as MMENGINE_PARAM_SCHEDULERS | |
| from mmengine.registry import \ | |
| RUNNER_CONSTRUCTORS as MMENGINE_RUNNER_CONSTRUCTORS | |
| from mmengine.registry import RUNNERS as MMENGINE_RUNNERS | |
| from mmengine.registry import TASK_UTILS as MMENGINE_TASK_UTILS | |
| from mmengine.registry import TRANSFORMS as MMENGINE_TRANSFORMS | |
| from mmengine.registry import VISBACKENDS as MMENGINE_VISBACKENDS | |
| from mmengine.registry import VISUALIZERS as MMENGINE_VISUALIZERS | |
| from mmengine.registry import \ | |
| WEIGHT_INITIALIZERS as MMENGINE_WEIGHT_INITIALIZERS | |
| from mmengine.registry import Registry | |
| __all__ = [ | |
| 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'LOOPS', 'HOOKS', 'LOG_PROCESSORS', | |
| 'OPTIMIZERS', 'OPTIM_WRAPPERS', 'OPTIM_WRAPPER_CONSTRUCTORS', | |
| 'PARAM_SCHEDULERS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', | |
| 'MODEL_WRAPPERS', 'WEIGHT_INITIALIZERS', 'BATCH_AUGMENTS', 'TASK_UTILS', | |
| 'METRICS', 'EVALUATORS', 'VISUALIZERS', 'VISBACKENDS' | |
| ] | |
| ####################################################################### | |
| # mmpretrain.engine # | |
| ####################################################################### | |
| # Runners like `EpochBasedRunner` and `IterBasedRunner` | |
| RUNNERS = Registry( | |
| 'runner', | |
| parent=MMENGINE_RUNNERS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Runner constructors that define how to initialize runners | |
| RUNNER_CONSTRUCTORS = Registry( | |
| 'runner constructor', | |
| parent=MMENGINE_RUNNER_CONSTRUCTORS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Loops which define the training or test process, like `EpochBasedTrainLoop` | |
| LOOPS = Registry( | |
| 'loop', | |
| parent=MMENGINE_LOOPS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Hooks to add additional functions during running, like `CheckpointHook` | |
| HOOKS = Registry( | |
| 'hook', | |
| parent=MMENGINE_HOOKS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Log processors to process the scalar log data. | |
| LOG_PROCESSORS = Registry( | |
| 'log processor', | |
| parent=MMENGINE_LOG_PROCESSORS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Optimizers to optimize the model weights, like `SGD` and `Adam`. | |
| OPTIMIZERS = Registry( | |
| 'optimizer', | |
| parent=MMENGINE_OPTIMIZERS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Optimizer wrappers to enhance the optimization process. | |
| OPTIM_WRAPPERS = Registry( | |
| 'optimizer_wrapper', | |
| parent=MMENGINE_OPTIM_WRAPPERS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Optimizer constructors to customize the hyperparameters of optimizers. | |
| OPTIM_WRAPPER_CONSTRUCTORS = Registry( | |
| 'optimizer wrapper constructor', | |
| parent=MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| # Parameter schedulers to dynamically adjust optimization parameters. | |
| PARAM_SCHEDULERS = Registry( | |
| 'parameter scheduler', | |
| parent=MMENGINE_PARAM_SCHEDULERS, | |
| locations=['mmpretrain.engine'], | |
| ) | |
| ####################################################################### | |
| # mmpretrain.datasets # | |
| ####################################################################### | |
| # Datasets like `ImageNet` and `CIFAR10`. | |
| DATASETS = Registry( | |
| 'dataset', | |
| parent=MMENGINE_DATASETS, | |
| locations=['mmpretrain.datasets'], | |
| ) | |
| # Samplers to sample the dataset. | |
| DATA_SAMPLERS = Registry( | |
| 'data sampler', | |
| parent=MMENGINE_DATA_SAMPLERS, | |
| locations=['mmpretrain.datasets'], | |
| ) | |
| # Transforms to process the samples from the dataset. | |
| TRANSFORMS = Registry( | |
| 'transform', | |
| parent=MMENGINE_TRANSFORMS, | |
| locations=['mmpretrain.datasets'], | |
| ) | |
| ####################################################################### | |
| # mmpretrain.models # | |
| ####################################################################### | |
| # Neural network modules inheriting `nn.Module`. | |
| MODELS = Registry( | |
| 'model', | |
| parent=MMENGINE_MODELS, | |
| locations=['mmpretrain.models'], | |
| ) | |
| # Model wrappers like 'MMDistributedDataParallel' | |
| MODEL_WRAPPERS = Registry( | |
| 'model_wrapper', | |
| parent=MMENGINE_MODEL_WRAPPERS, | |
| locations=['mmpretrain.models'], | |
| ) | |
| # Weight initialization methods like uniform, xavier. | |
| WEIGHT_INITIALIZERS = Registry( | |
| 'weight initializer', | |
| parent=MMENGINE_WEIGHT_INITIALIZERS, | |
| locations=['mmpretrain.models'], | |
| ) | |
| # Batch augmentations like `Mixup` and `CutMix`. | |
| BATCH_AUGMENTS = Registry( | |
| 'batch augment', | |
| locations=['mmpretrain.models'], | |
| ) | |
| # Task-specific modules like anchor generators and box coders | |
| TASK_UTILS = Registry( | |
| 'task util', | |
| parent=MMENGINE_TASK_UTILS, | |
| locations=['mmpretrain.models'], | |
| ) | |
| # Tokenizer to encode sequence | |
| TOKENIZER = Registry( | |
| 'tokenizer', | |
| locations=['mmpretrain.models'], | |
| ) | |
| ####################################################################### | |
| # mmpretrain.evaluation # | |
| ####################################################################### | |
| # Metrics to evaluate the model prediction results. | |
| METRICS = Registry( | |
| 'metric', | |
| parent=MMENGINE_METRICS, | |
| locations=['mmpretrain.evaluation'], | |
| ) | |
| # Evaluators to define the evaluation process. | |
| EVALUATORS = Registry( | |
| 'evaluator', | |
| parent=MMENGINE_EVALUATOR, | |
| locations=['mmpretrain.evaluation'], | |
| ) | |
| ####################################################################### | |
| # mmpretrain.visualization # | |
| ####################################################################### | |
| # Visualizers to display task-specific results. | |
| VISUALIZERS = Registry( | |
| 'visualizer', | |
| parent=MMENGINE_VISUALIZERS, | |
| locations=['mmpretrain.visualization'], | |
| ) | |
| # Backends to save the visualization results, like TensorBoard, WandB. | |
| VISBACKENDS = Registry( | |
| 'vis_backend', | |
| parent=MMENGINE_VISBACKENDS, | |
| locations=['mmpretrain.visualization'], | |
| ) | |