Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# This is a BETA new format config file, and the usage may change recently. | |
# Refers to https://pytorch.org/blog/ml-models-torchvision-v0.9/#classification | |
from mmengine.config import read_base | |
with read_base(): | |
from .._base_.models.mobilenet_v3_small import * | |
from .._base_.datasets.imagenet_bs128_mbv3 import * | |
from .._base_.default_runtime import * | |
from mmengine.optim import StepLR | |
from torch.optim import RMSprop | |
# schedule settings | |
optim_wrapper = dict( | |
optimizer=dict( | |
type=RMSprop, | |
lr=0.064, | |
alpha=0.9, | |
momentum=0.9, | |
eps=0.0316, | |
weight_decay=1e-5)) | |
param_scheduler = dict(type=StepLR, by_epoch=True, step_size=2, gamma=0.973) | |
train_cfg = dict(by_epoch=True, max_epochs=600, val_interval=1) | |
val_cfg = dict() | |
test_cfg = dict() | |
# NOTE: `auto_scale_lr` is for automatically scaling LR | |
# based on the actual training batch size. | |
# base_batch_size = (8 GPUs) x (128 samples per GPU) | |
auto_scale_lr = dict(base_batch_size=1024) | |