TTP / mmpretrain /configs /_base_ /datasets /imagenet_bs512_mae.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
1.18 kB
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmcv.transforms import LoadImageFromFile, RandomFlip
from mmengine.dataset.sampler import DefaultSampler
from mmpretrain.datasets import ImageNet, PackInputs, RandomResizedCrop
from mmpretrain.models import SelfSupDataPreprocessor
# dataset settings
dataset_type = ImageNet
data_root = 'data/imagenet/'
data_preprocessor = dict(
type=SelfSupDataPreprocessor,
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
train_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=RandomResizedCrop,
scale=224,
crop_ratio_range=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type=RandomFlip, prob=0.5),
dict(type=PackInputs)
]
train_dataloader = dict(
batch_size=512,
num_workers=8,
persistent_workers=True,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
split='train',
pipeline=train_pipeline))