Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Optional, Sequence, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from mmengine.model.utils import stack_batch | |
from mmdet.models.utils.misc import samplelist_boxtype2tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures import TrackDataSample | |
from mmdet.structures.mask import BitmapMasks | |
from .data_preprocessor import DetDataPreprocessor | |
class TrackDataPreprocessor(DetDataPreprocessor): | |
"""Image pre-processor for tracking tasks. | |
Accepts the data sampled by the dataloader, and preprocesses | |
it into the format of the model input. ``TrackDataPreprocessor`` | |
provides the tracking data pre-processing as follows: | |
- Collate and move data to the target device. | |
- Pad inputs to the maximum size of current batch with defined | |
``pad_value``. The padding size can be divisible by a defined | |
``pad_size_divisor`` | |
- Stack inputs to inputs. | |
- Convert inputs from bgr to rgb if the shape of input is (1, 3, H, W). | |
- Normalize image with defined std and mean. | |
- Do batch augmentations during training. | |
- Record the information of ``batch_input_shape`` and ``pad_shape``. | |
Args: | |
mean (Sequence[Number], optional): The pixel mean of R, G, B | |
channels. Defaults to None. | |
std (Sequence[Number], optional): The pixel standard deviation of | |
R, G, B channels. Defaults to None. | |
pad_size_divisor (int): The size of padded image should be | |
divisible by ``pad_size_divisor``. Defaults to 1. | |
pad_value (Number): The padded pixel value. Defaults to 0. | |
pad_mask (bool): Whether to pad instance masks. Defaults to False. | |
mask_pad_value (int): The padded pixel value for instance masks. | |
Defaults to 0. | |
bgr_to_rgb (bool): whether to convert image from BGR to RGB. | |
Defaults to False. | |
rgb_to_bgr (bool): whether to convert image from RGB to RGB. | |
Defaults to False. | |
use_det_processor: (bool): whether to use DetDataPreprocessor | |
in training phrase. This is mainly for some tracking models | |
fed into one image rather than a group of image in training. | |
Defaults to False. | |
. boxtype2tensor (bool): Whether to convert the ``BaseBoxes`` type of | |
bboxes data to ``Tensor`` type. Defaults to True. | |
batch_augments (list[dict], optional): Batch-level augmentations | |
""" | |
def __init__(self, | |
mean: Optional[Sequence[Union[float, int]]] = None, | |
std: Optional[Sequence[Union[float, int]]] = None, | |
use_det_processor: bool = False, | |
**kwargs): | |
super().__init__(mean=mean, std=std, **kwargs) | |
self.use_det_processor = use_det_processor | |
if mean is not None and not self.use_det_processor: | |
# overwrite the ``register_bufffer`` in ``ImgDataPreprocessor`` | |
# since the shape of ``mean`` and ``std`` in tracking tasks must be | |
# (T, C, H, W), which T is the temporal length of the video. | |
self.register_buffer('mean', | |
torch.tensor(mean).view(1, -1, 1, 1), False) | |
self.register_buffer('std', | |
torch.tensor(std).view(1, -1, 1, 1), False) | |
def forward(self, data: dict, training: bool = False) -> Dict: | |
"""Perform normalization,padding and bgr2rgb conversion based on | |
``TrackDataPreprocessor``. | |
Args: | |
data (dict): data sampled from dataloader. | |
training (bool): Whether to enable training time augmentation. | |
Returns: | |
Tuple[Dict[str, List[torch.Tensor]], OptSampleList]: Data in the | |
same format as the model input. | |
""" | |
if self.use_det_processor and training: | |
batch_pad_shape = self._get_pad_shape(data) | |
else: | |
batch_pad_shape = self._get_track_pad_shape(data) | |
data = self.cast_data(data) | |
imgs, data_samples = data['inputs'], data['data_samples'] | |
if self.use_det_processor and training: | |
assert imgs[0].dim() == 3, \ | |
'Only support the 3 dims when use detpreprocessor in training' | |
if self._channel_conversion: | |
imgs = [_img[[2, 1, 0], ...] for _img in imgs] | |
# Convert to `float` | |
imgs = [_img.float() for _img in imgs] | |
if self._enable_normalize: | |
imgs = [(_img - self.mean) / self.std for _img in imgs] | |
inputs = stack_batch(imgs, self.pad_size_divisor, self.pad_value) | |
else: | |
assert imgs[0].dim() == 4, \ | |
'Only support the 4 dims when use trackprocessor in training' | |
# The shape of imgs[0] is (T, C, H, W). | |
channel = imgs[0].size(1) | |
if self._channel_conversion and channel == 3: | |
imgs = [_img[:, [2, 1, 0], ...] for _img in imgs] | |
# change to `float` | |
imgs = [_img.float() for _img in imgs] | |
if self._enable_normalize: | |
imgs = [(_img - self.mean) / self.std for _img in imgs] | |
inputs = stack_track_batch(imgs, self.pad_size_divisor, | |
self.pad_value) | |
if data_samples is not None: | |
# NOTE the batched image size information may be useful, e.g. | |
# in DETR, this is needed for the construction of masks, which is | |
# then used for the transformer_head. | |
batch_input_shape = tuple(inputs.size()[-2:]) | |
if self.use_det_processor and training: | |
for data_sample, pad_shape in zip(data_samples, | |
batch_pad_shape): | |
data_sample.set_metainfo({ | |
'batch_input_shape': batch_input_shape, | |
'pad_shape': pad_shape | |
}) | |
if self.boxtype2tensor: | |
samplelist_boxtype2tensor(data_samples) | |
if self.pad_mask: | |
self.pad_gt_masks(data_samples) | |
else: | |
for track_data_sample, pad_shapes in zip( | |
data_samples, batch_pad_shape): | |
for i in range(len(track_data_sample)): | |
det_data_sample = track_data_sample[i] | |
det_data_sample.set_metainfo({ | |
'batch_input_shape': batch_input_shape, | |
'pad_shape': pad_shapes[i] | |
}) | |
if self.pad_mask and training: | |
self.pad_track_gt_masks(data_samples) | |
if training and self.batch_augments is not None: | |
for batch_aug in self.batch_augments: | |
if self.use_det_processor and training: | |
inputs, data_samples = batch_aug(inputs, data_samples) | |
else: | |
# we only support T==1 when using batch augments. | |
# Only yolox need batch_aug, and yolox can only process | |
# (N, C, H, W) shape. | |
# The shape of `inputs` is (N, T, C, H, W), hence, we use | |
# inputs[:, 0] to change the shape to (N, C, H, W). | |
assert inputs.size(1) == 1 and len( | |
data_samples[0] | |
) == 1, 'Only support the number of sequence images equals to 1 when using batch augment.' # noqa: E501 | |
det_data_samples = [ | |
track_data_sample[0] | |
for track_data_sample in data_samples | |
] | |
aug_inputs, aug_det_samples = batch_aug( | |
inputs[:, 0], det_data_samples) | |
inputs = aug_inputs.unsqueeze(1) | |
for track_data_sample, det_sample in zip( | |
data_samples, aug_det_samples): | |
track_data_sample.video_data_samples = [det_sample] | |
# Note: inputs may contain large number of frames, so we must make | |
# sure that the mmeory is contiguous for stable forward | |
inputs = inputs.contiguous() | |
return dict(inputs=inputs, data_samples=data_samples) | |
def _get_track_pad_shape(self, data: dict) -> Dict[str, List]: | |
"""Get the pad_shape of each image based on data and pad_size_divisor. | |
Args: | |
data (dict): Data sampled from dataloader. | |
Returns: | |
Dict[str, List]: The shape of padding. | |
""" | |
batch_pad_shape = dict() | |
batch_pad_shape = [] | |
for imgs in data['inputs']: | |
# The sequence images in one sample among a batch have the same | |
# original shape | |
pad_h = int(np.ceil(imgs.shape[-2] / | |
self.pad_size_divisor)) * self.pad_size_divisor | |
pad_w = int(np.ceil(imgs.shape[-1] / | |
self.pad_size_divisor)) * self.pad_size_divisor | |
pad_shapes = [(pad_h, pad_w)] * imgs.size(0) | |
batch_pad_shape.append(pad_shapes) | |
return batch_pad_shape | |
def pad_track_gt_masks(self, | |
data_samples: Sequence[TrackDataSample]) -> None: | |
"""Pad gt_masks to shape of batch_input_shape.""" | |
if 'masks' in data_samples[0][0].get('gt_instances', None): | |
for track_data_sample in data_samples: | |
for i in range(len(track_data_sample)): | |
det_data_sample = track_data_sample[i] | |
masks = det_data_sample.gt_instances.masks | |
# TODO: whether to use BitmapMasks | |
assert isinstance(masks, BitmapMasks) | |
batch_input_shape = det_data_sample.batch_input_shape | |
det_data_sample.gt_instances.masks = masks.pad( | |
batch_input_shape, pad_val=self.mask_pad_value) | |
def stack_track_batch(tensors: List[torch.Tensor], | |
pad_size_divisor: int = 0, | |
pad_value: Union[int, float] = 0) -> torch.Tensor: | |
"""Stack multiple tensors to form a batch and pad the images to the max | |
shape use the right bottom padding mode in these images. If | |
``pad_size_divisor > 0``, add padding to ensure the common height and width | |
is divisible by ``pad_size_divisor``. The difference between this function | |
and ``stack_batch`` in MMEngine is that this function can process batch | |
sequence images with shape (N, T, C, H, W). | |
Args: | |
tensors (List[Tensor]): The input multiple tensors. each is a | |
TCHW 4D-tensor. T denotes the number of key/reference frames. | |
pad_size_divisor (int): If ``pad_size_divisor > 0``, add padding | |
to ensure the common height and width is divisible by | |
``pad_size_divisor``. This depends on the model, and many | |
models need a divisibility of 32. Defaults to 0 | |
pad_value (int, float): The padding value. Defaults to 0 | |
Returns: | |
Tensor: The NTCHW 5D-tensor. N denotes the batch size. | |
""" | |
assert isinstance(tensors, list), \ | |
f'Expected input type to be list, but got {type(tensors)}' | |
assert len(set([tensor.ndim for tensor in tensors])) == 1, \ | |
f'Expected the dimensions of all tensors must be the same, ' \ | |
f'but got {[tensor.ndim for tensor in tensors]}' | |
assert tensors[0].ndim == 4, f'Expected tensor dimension to be 4, ' \ | |
f'but got {tensors[0].ndim}' | |
assert len(set([tensor.shape[0] for tensor in tensors])) == 1, \ | |
f'Expected the channels of all tensors must be the same, ' \ | |
f'but got {[tensor.shape[0] for tensor in tensors]}' | |
tensor_sizes = [(tensor.shape[-2], tensor.shape[-1]) for tensor in tensors] | |
max_size = np.stack(tensor_sizes).max(0) | |
if pad_size_divisor > 1: | |
# the last two dims are H,W, both subject to divisibility requirement | |
max_size = ( | |
max_size + | |
(pad_size_divisor - 1)) // pad_size_divisor * pad_size_divisor | |
padded_samples = [] | |
for tensor in tensors: | |
padding_size = [ | |
0, max_size[-1] - tensor.shape[-1], 0, | |
max_size[-2] - tensor.shape[-2] | |
] | |
if sum(padding_size) == 0: | |
padded_samples.append(tensor) | |
else: | |
padded_samples.append(F.pad(tensor, padding_size, value=pad_value)) | |
return torch.stack(padded_samples, dim=0) | |