File size: 9,686 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict

import mmengine
import torch
from mmengine.runner import CheckpointLoader


def convert_key_name(ckpt):
    new_ckpt = OrderedDict()

    for k, v in ckpt.items():
        key_list = k.split('.')
        if key_list[0] == 'clip_visual_extractor':
            new_transform_name = 'image_encoder'
            if key_list[1] == 'class_embedding':
                new_name = '.'.join([new_transform_name, 'cls_token'])
            elif key_list[1] == 'positional_embedding':
                new_name = '.'.join([new_transform_name, 'pos_embed'])
            elif key_list[1] == 'conv1':
                new_name = '.'.join([
                    new_transform_name, 'patch_embed.projection', key_list[2]
                ])
            elif key_list[1] == 'ln_pre':
                new_name = '.'.join(
                    [new_transform_name, key_list[1], key_list[2]])
            elif key_list[1] == 'resblocks':
                new_layer_name = 'layers'
                layer_index = key_list[2]
                paras = key_list[3:]
                if paras[0] == 'ln_1':
                    new_para_name = '.'.join(['ln1'] + key_list[4:])
                elif paras[0] == 'attn':
                    new_para_name = '.'.join(['attn.attn'] + key_list[4:])
                elif paras[0] == 'ln_2':
                    new_para_name = '.'.join(['ln2'] + key_list[4:])
                elif paras[0] == 'mlp':
                    if paras[1] == 'c_fc':
                        new_para_name = '.'.join(['ffn.layers.0.0'] +
                                                 key_list[-1:])
                    else:
                        new_para_name = '.'.join(['ffn.layers.1'] +
                                                 key_list[-1:])
                new_name = '.'.join([
                    new_transform_name, new_layer_name, layer_index,
                    new_para_name
                ])
        elif key_list[0] == 'side_adapter_network':
            decode_head_name = 'decode_head'
            module_name = 'side_adapter_network'
            if key_list[1] == 'vit_model':
                if key_list[2] == 'blocks':
                    layer_name = 'encode_layers'
                    layer_index = key_list[3]
                    paras = key_list[4:]
                    if paras[0] == 'norm1':
                        new_para_name = '.'.join(['ln1'] + key_list[5:])
                    elif paras[0] == 'attn':
                        new_para_name = '.'.join(key_list[4:])
                        new_para_name = new_para_name.replace(
                            'attn.qkv.', 'attn.attn.in_proj_')
                        new_para_name = new_para_name.replace(
                            'attn.proj', 'attn.attn.out_proj')
                    elif paras[0] == 'norm2':
                        new_para_name = '.'.join(['ln2'] + key_list[5:])
                    elif paras[0] == 'mlp':
                        new_para_name = '.'.join(['ffn'] + key_list[5:])
                        new_para_name = new_para_name.replace(
                            'fc1', 'layers.0.0')
                        new_para_name = new_para_name.replace(
                            'fc2', 'layers.1')
                    else:
                        print(f'Wrong for {k}')
                    new_name = '.'.join([
                        decode_head_name, module_name, layer_name, layer_index,
                        new_para_name
                    ])
                elif key_list[2] == 'pos_embed':
                    new_name = '.'.join(
                        [decode_head_name, module_name, 'pos_embed'])
                elif key_list[2] == 'patch_embed':
                    new_name = '.'.join([
                        decode_head_name, module_name, 'patch_embed',
                        'projection', key_list[4]
                    ])
                else:
                    print(f'Wrong for {k}')
            elif key_list[1] == 'query_embed' or key_list[
                    1] == 'query_pos_embed':
                new_name = '.'.join(
                    [decode_head_name, module_name, key_list[1]])
            elif key_list[1] == 'fusion_layers':
                layer_name = 'conv_clips'
                layer_index = key_list[2][-1]
                paras = '.'.join(key_list[3:])
                new_para_name = paras.replace('input_proj.0', '0')
                new_para_name = new_para_name.replace('input_proj.1', '1.conv')
                new_name = '.'.join([
                    decode_head_name, module_name, layer_name, layer_index,
                    new_para_name
                ])
            elif key_list[1] == 'mask_decoder':
                new_name = 'decode_head.' + k
            else:
                print(f'Wrong for {k}')
        elif key_list[0] == 'clip_rec_head':
            module_name = 'rec_with_attnbias'
            if key_list[1] == 'proj':
                new_name = '.'.join(
                    [decode_head_name, module_name, 'proj.weight'])
            elif key_list[1] == 'ln_post':
                new_name = '.'.join(
                    [decode_head_name, module_name, 'ln_post', key_list[2]])
            elif key_list[1] == 'resblocks':
                new_layer_name = 'layers'
                layer_index = key_list[2]
                paras = key_list[3:]
                if paras[0] == 'ln_1':
                    new_para_name = '.'.join(['norms.0'] + paras[1:])
                elif paras[0] == 'attn':
                    new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
                elif paras[0] == 'ln_2':
                    new_para_name = '.'.join(['norms.1'] + paras[1:])
                elif paras[0] == 'mlp':
                    if paras[1] == 'c_fc':
                        new_para_name = '.'.join(['ffns.0.layers.0.0'] +
                                                 paras[2:])
                    elif paras[1] == 'c_proj':
                        new_para_name = '.'.join(['ffns.0.layers.1'] +
                                                 paras[2:])
                    else:
                        print(f'Wrong for {k}')
                new_name = '.'.join([
                    decode_head_name, module_name, new_layer_name, layer_index,
                    new_para_name
                ])
            else:
                print(f'Wrong for {k}')
        elif key_list[0] == 'ov_classifier':
            text_encoder_name = 'text_encoder'
            if key_list[1] == 'transformer':
                layer_name = 'transformer'
                layer_index = key_list[3]
                paras = key_list[4:]
                if paras[0] == 'attn':
                    new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
                elif paras[0] == 'ln_1':
                    new_para_name = '.'.join(['norms.0'] + paras[1:])
                elif paras[0] == 'ln_2':
                    new_para_name = '.'.join(['norms.1'] + paras[1:])
                elif paras[0] == 'mlp':
                    if paras[1] == 'c_fc':
                        new_para_name = '.'.join(['ffns.0.layers.0.0'] +
                                                 paras[2:])
                    elif paras[1] == 'c_proj':
                        new_para_name = '.'.join(['ffns.0.layers.1'] +
                                                 paras[2:])
                    else:
                        print(f'Wrong for {k}')
                else:
                    print(f'Wrong for {k}')
                new_name = '.'.join([
                    text_encoder_name, layer_name, layer_index, new_para_name
                ])
            elif key_list[1] in [
                    'positional_embedding', 'text_projection', 'bg_embed',
                    'attn_mask', 'logit_scale', 'token_embedding', 'ln_final'
            ]:
                new_name = k.replace('ov_classifier', 'text_encoder')
            else:
                print(f'Wrong for {k}')
        elif key_list[0] == 'criterion':
            new_name = k
        else:
            print(f'Wrong for {k}')
        new_ckpt[new_name] = v
    return new_ckpt


def convert_tensor(ckpt):
    cls_token = ckpt['image_encoder.cls_token']
    new_cls_token = cls_token.unsqueeze(0).unsqueeze(0)
    ckpt['image_encoder.cls_token'] = new_cls_token
    pos_embed = ckpt['image_encoder.pos_embed']
    new_pos_embed = pos_embed.unsqueeze(0)
    ckpt['image_encoder.pos_embed'] = new_pos_embed
    proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight']
    new_proj_weight = proj_weight.transpose(1, 0)
    ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight
    return ckpt


def main():
    parser = argparse.ArgumentParser(
        description='Convert keys in timm pretrained vit models to '
        'MMSegmentation style.')
    parser.add_argument('src', help='src model path or url')
    # The dst path must be a full path of the new checkpoint.
    parser.add_argument('dst', help='save path')
    args = parser.parse_args()

    checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
    if 'state_dict' in checkpoint:
        # timm checkpoint
        state_dict = checkpoint['state_dict']
    elif 'model' in checkpoint:
        # deit checkpoint
        state_dict = checkpoint['model']
    else:
        state_dict = checkpoint
    weight = convert_key_name(state_dict)
    weight = convert_tensor(weight)
    mmengine.mkdir_or_exist(osp.dirname(args.dst))
    torch.save(weight, args.dst)


if __name__ == '__main__':
    main()