Spaces:
Runtime error
Runtime error
File size: 9,686 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmengine
import torch
from mmengine.runner import CheckpointLoader
def convert_key_name(ckpt):
new_ckpt = OrderedDict()
for k, v in ckpt.items():
key_list = k.split('.')
if key_list[0] == 'clip_visual_extractor':
new_transform_name = 'image_encoder'
if key_list[1] == 'class_embedding':
new_name = '.'.join([new_transform_name, 'cls_token'])
elif key_list[1] == 'positional_embedding':
new_name = '.'.join([new_transform_name, 'pos_embed'])
elif key_list[1] == 'conv1':
new_name = '.'.join([
new_transform_name, 'patch_embed.projection', key_list[2]
])
elif key_list[1] == 'ln_pre':
new_name = '.'.join(
[new_transform_name, key_list[1], key_list[2]])
elif key_list[1] == 'resblocks':
new_layer_name = 'layers'
layer_index = key_list[2]
paras = key_list[3:]
if paras[0] == 'ln_1':
new_para_name = '.'.join(['ln1'] + key_list[4:])
elif paras[0] == 'attn':
new_para_name = '.'.join(['attn.attn'] + key_list[4:])
elif paras[0] == 'ln_2':
new_para_name = '.'.join(['ln2'] + key_list[4:])
elif paras[0] == 'mlp':
if paras[1] == 'c_fc':
new_para_name = '.'.join(['ffn.layers.0.0'] +
key_list[-1:])
else:
new_para_name = '.'.join(['ffn.layers.1'] +
key_list[-1:])
new_name = '.'.join([
new_transform_name, new_layer_name, layer_index,
new_para_name
])
elif key_list[0] == 'side_adapter_network':
decode_head_name = 'decode_head'
module_name = 'side_adapter_network'
if key_list[1] == 'vit_model':
if key_list[2] == 'blocks':
layer_name = 'encode_layers'
layer_index = key_list[3]
paras = key_list[4:]
if paras[0] == 'norm1':
new_para_name = '.'.join(['ln1'] + key_list[5:])
elif paras[0] == 'attn':
new_para_name = '.'.join(key_list[4:])
new_para_name = new_para_name.replace(
'attn.qkv.', 'attn.attn.in_proj_')
new_para_name = new_para_name.replace(
'attn.proj', 'attn.attn.out_proj')
elif paras[0] == 'norm2':
new_para_name = '.'.join(['ln2'] + key_list[5:])
elif paras[0] == 'mlp':
new_para_name = '.'.join(['ffn'] + key_list[5:])
new_para_name = new_para_name.replace(
'fc1', 'layers.0.0')
new_para_name = new_para_name.replace(
'fc2', 'layers.1')
else:
print(f'Wrong for {k}')
new_name = '.'.join([
decode_head_name, module_name, layer_name, layer_index,
new_para_name
])
elif key_list[2] == 'pos_embed':
new_name = '.'.join(
[decode_head_name, module_name, 'pos_embed'])
elif key_list[2] == 'patch_embed':
new_name = '.'.join([
decode_head_name, module_name, 'patch_embed',
'projection', key_list[4]
])
else:
print(f'Wrong for {k}')
elif key_list[1] == 'query_embed' or key_list[
1] == 'query_pos_embed':
new_name = '.'.join(
[decode_head_name, module_name, key_list[1]])
elif key_list[1] == 'fusion_layers':
layer_name = 'conv_clips'
layer_index = key_list[2][-1]
paras = '.'.join(key_list[3:])
new_para_name = paras.replace('input_proj.0', '0')
new_para_name = new_para_name.replace('input_proj.1', '1.conv')
new_name = '.'.join([
decode_head_name, module_name, layer_name, layer_index,
new_para_name
])
elif key_list[1] == 'mask_decoder':
new_name = 'decode_head.' + k
else:
print(f'Wrong for {k}')
elif key_list[0] == 'clip_rec_head':
module_name = 'rec_with_attnbias'
if key_list[1] == 'proj':
new_name = '.'.join(
[decode_head_name, module_name, 'proj.weight'])
elif key_list[1] == 'ln_post':
new_name = '.'.join(
[decode_head_name, module_name, 'ln_post', key_list[2]])
elif key_list[1] == 'resblocks':
new_layer_name = 'layers'
layer_index = key_list[2]
paras = key_list[3:]
if paras[0] == 'ln_1':
new_para_name = '.'.join(['norms.0'] + paras[1:])
elif paras[0] == 'attn':
new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
elif paras[0] == 'ln_2':
new_para_name = '.'.join(['norms.1'] + paras[1:])
elif paras[0] == 'mlp':
if paras[1] == 'c_fc':
new_para_name = '.'.join(['ffns.0.layers.0.0'] +
paras[2:])
elif paras[1] == 'c_proj':
new_para_name = '.'.join(['ffns.0.layers.1'] +
paras[2:])
else:
print(f'Wrong for {k}')
new_name = '.'.join([
decode_head_name, module_name, new_layer_name, layer_index,
new_para_name
])
else:
print(f'Wrong for {k}')
elif key_list[0] == 'ov_classifier':
text_encoder_name = 'text_encoder'
if key_list[1] == 'transformer':
layer_name = 'transformer'
layer_index = key_list[3]
paras = key_list[4:]
if paras[0] == 'attn':
new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
elif paras[0] == 'ln_1':
new_para_name = '.'.join(['norms.0'] + paras[1:])
elif paras[0] == 'ln_2':
new_para_name = '.'.join(['norms.1'] + paras[1:])
elif paras[0] == 'mlp':
if paras[1] == 'c_fc':
new_para_name = '.'.join(['ffns.0.layers.0.0'] +
paras[2:])
elif paras[1] == 'c_proj':
new_para_name = '.'.join(['ffns.0.layers.1'] +
paras[2:])
else:
print(f'Wrong for {k}')
else:
print(f'Wrong for {k}')
new_name = '.'.join([
text_encoder_name, layer_name, layer_index, new_para_name
])
elif key_list[1] in [
'positional_embedding', 'text_projection', 'bg_embed',
'attn_mask', 'logit_scale', 'token_embedding', 'ln_final'
]:
new_name = k.replace('ov_classifier', 'text_encoder')
else:
print(f'Wrong for {k}')
elif key_list[0] == 'criterion':
new_name = k
else:
print(f'Wrong for {k}')
new_ckpt[new_name] = v
return new_ckpt
def convert_tensor(ckpt):
cls_token = ckpt['image_encoder.cls_token']
new_cls_token = cls_token.unsqueeze(0).unsqueeze(0)
ckpt['image_encoder.cls_token'] = new_cls_token
pos_embed = ckpt['image_encoder.pos_embed']
new_pos_embed = pos_embed.unsqueeze(0)
ckpt['image_encoder.pos_embed'] = new_pos_embed
proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight']
new_proj_weight = proj_weight.transpose(1, 0)
ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight
return ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in timm pretrained vit models to '
'MMSegmentation style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'state_dict' in checkpoint:
# timm checkpoint
state_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
# deit checkpoint
state_dict = checkpoint['model']
else:
state_dict = checkpoint
weight = convert_key_name(state_dict)
weight = convert_tensor(weight)
mmengine.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
if __name__ == '__main__':
main()
|