File size: 6,183 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict

import mmengine
import torch
from mmengine.runner import CheckpointLoader


def convert_vitlayer(paras):
    new_para_name = ''
    if paras[0] == 'ln_1':
        new_para_name = '.'.join(['ln1'] + paras[1:])
    elif paras[0] == 'attn':
        new_para_name = '.'.join(['attn.attn'] + paras[1:])
    elif paras[0] == 'ln_2':
        new_para_name = '.'.join(['ln2'] + paras[1:])
    elif paras[0] == 'mlp':
        if paras[1] == 'c_fc':
            new_para_name = '.'.join(['ffn.layers.0.0'] + paras[-1:])
        else:
            new_para_name = '.'.join(['ffn.layers.1'] + paras[-1:])
    else:
        print(f'Wrong for {paras}')
    return new_para_name


def convert_translayer(paras):
    new_para_name = ''
    if paras[0] == 'attn':
        new_para_name = '.'.join(['attentions.0.attn'] + paras[1:])
    elif paras[0] == 'ln_1':
        new_para_name = '.'.join(['norms.0'] + paras[1:])
    elif paras[0] == 'ln_2':
        new_para_name = '.'.join(['norms.1'] + paras[1:])
    elif paras[0] == 'mlp':
        if paras[1] == 'c_fc':
            new_para_name = '.'.join(['ffns.0.layers.0.0'] + paras[2:])
        elif paras[1] == 'c_proj':
            new_para_name = '.'.join(['ffns.0.layers.1'] + paras[2:])
        else:
            print(f'Wrong for {paras}')
    else:
        print(f'Wrong for {paras}')
    return new_para_name


def convert_key_name(ckpt, visual_split):
    new_ckpt = OrderedDict()
    for k, v in ckpt.items():
        key_list = k.split('.')
        if key_list[0] == 'visual':
            new_transform_name = 'image_encoder'
            if key_list[1] == 'class_embedding':
                new_name = '.'.join([new_transform_name, 'cls_token'])
            elif key_list[1] == 'positional_embedding':
                new_name = '.'.join([new_transform_name, 'pos_embed'])
            elif key_list[1] == 'conv1':
                new_name = '.'.join([
                    new_transform_name, 'patch_embed.projection', key_list[2]
                ])
            elif key_list[1] == 'ln_pre':
                new_name = '.'.join(
                    [new_transform_name, key_list[1], key_list[2]])
            elif key_list[1] == 'transformer':
                new_layer_name = 'layers'
                layer_index = key_list[3]
                paras = key_list[4:]
                if int(layer_index) < visual_split:
                    new_para_name = convert_vitlayer(paras)
                    new_name = '.'.join([
                        new_transform_name, new_layer_name, layer_index,
                        new_para_name
                    ])
                else:
                    new_para_name = convert_translayer(paras)
                    new_transform_name = 'decode_head.rec_with_attnbias'
                    new_layer_name = 'layers'
                    layer_index = str(int(layer_index) - visual_split)
                    new_name = '.'.join([
                        new_transform_name, new_layer_name, layer_index,
                        new_para_name
                    ])
            elif key_list[1] == 'proj':
                new_name = 'decode_head.rec_with_attnbias.proj.weight'
            elif key_list[1] == 'ln_post':
                new_name = k.replace('visual', 'decode_head.rec_with_attnbias')
            else:
                print(f'pop parameter: {k}')
                continue
        else:
            text_encoder_name = 'text_encoder'
            if key_list[0] == 'transformer':
                layer_name = 'transformer'
                layer_index = key_list[2]
                paras = key_list[3:]
                new_para_name = convert_translayer(paras)
                new_name = '.'.join([
                    text_encoder_name, layer_name, layer_index, new_para_name
                ])
            elif key_list[0] in [
                    'positional_embedding', 'text_projection', 'bg_embed',
                    'attn_mask', 'logit_scale', 'token_embedding', 'ln_final'
            ]:
                new_name = 'text_encoder.' + k
            else:
                print(f'pop parameter: {k}')
                continue
        new_ckpt[new_name] = v

    return new_ckpt


def convert_tensor(ckpt):
    cls_token = ckpt['image_encoder.cls_token']
    new_cls_token = cls_token.unsqueeze(0).unsqueeze(0)
    ckpt['image_encoder.cls_token'] = new_cls_token
    pos_embed = ckpt['image_encoder.pos_embed']
    new_pos_embed = pos_embed.unsqueeze(0)
    ckpt['image_encoder.pos_embed'] = new_pos_embed
    proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight']
    new_proj_weight = proj_weight.transpose(1, 0)
    ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight
    return ckpt


def main():
    parser = argparse.ArgumentParser(
        description='Convert keys in timm pretrained vit models to '
        'MMSegmentation style.')
    parser.add_argument('src', help='src model path or url')
    # The dst path must be a full path of the new checkpoint.
    parser.add_argument('dst', help='save path')
    args = parser.parse_args()

    if any([s in args.src for s in ['B-16', 'b16', 'base_patch16']]):
        visual_split = 9
    elif any([s in args.src for s in ['L-14', 'l14', 'large_patch14']]):
        visual_split = 18
    else:
        print('Make sure the clip model is ViT-B/16 or ViT-L/14!')
        visual_split = -1
    checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
    if isinstance(checkpoint, torch.jit.RecursiveScriptModule):
        state_dict = checkpoint.state_dict()
    else:
        if 'state_dict' in checkpoint:
            # timm checkpoint
            state_dict = checkpoint['state_dict']
        elif 'model' in checkpoint:
            # deit checkpoint
            state_dict = checkpoint['model']
        else:
            state_dict = checkpoint
    weight = convert_key_name(state_dict, visual_split)
    weight = convert_tensor(weight)
    mmengine.mkdir_or_exist(osp.dirname(args.dst))
    torch.save(weight, args.dst)


if __name__ == '__main__':
    main()