File size: 9,881 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from typing import Optional, Sequence

import mmcv
import numpy as np
from mmengine.dist import master_only

from mmseg.structures import SegDataSample
from mmseg.visualization import SegLocalVisualizer
from opencd.registry import VISUALIZERS


@VISUALIZERS.register_module()
class CDLocalVisualizer(SegLocalVisualizer):
    """Change Detection Local Visualizer. """

    @master_only
    def add_datasample(
            self,
            name: str,
            image: np.ndarray,
            image_from_to: Sequence[np.array],
            data_sample: Optional[SegDataSample] = None,
            draw_gt: bool = True,
            draw_pred: bool = True,
            show: bool = False,
            wait_time: float = 0,
            # TODO: Supported in mmengine's Viusalizer.
            out_file: Optional[str] = None,
            step: int = 0,
            with_labels: Optional[bool] = False) -> None:
        """Draw datasample and save to all backends.

        - If GT and prediction are plotted at the same time, they are
        displayed in a stitched image where the left image is the
        ground truth and the right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and
        the images will be displayed in a local window.
        - If ``out_file`` is specified, the drawn image will be
        saved to ``out_file``. it is usually used when the display
        is not available.

        Args:
            name (str): The image identifier.
            image (np.ndarray): The image to draw.
            image_from_to (Sequence[np.array]): The image pairs to draw.
            gt_sample (:obj:`SegDataSample`, optional): GT SegDataSample.
                Defaults to None.
            pred_sample (:obj:`SegDataSample`, optional): Prediction
                SegDataSample. Defaults to None.
            draw_gt (bool): Whether to draw GT SegDataSample. Default to True.
            draw_pred (bool): Whether to draw Prediction SegDataSample.
                Defaults to True.
            show (bool): Whether to display the drawn image. Default to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            out_file (str): Path to output file. Defaults to None.
            step (int): Global step value to record. Defaults to 0.
            with_labels(bool, optional): Add semantic labels in visualization
                result, Defaults to True.
        """
        exist_img_from_to = True if len(image_from_to) > 0 else False
        if exist_img_from_to:
            assert len(image_from_to) == 2, '`image_from_to` contains `from` ' \
                'and `to` images'

        classes = self.dataset_meta.get('classes', None)
        palette = self.dataset_meta.get('palette', None)
        semantic_classes = self.dataset_meta.get('semantic_classes', None)
        semantic_palette = self.dataset_meta.get('semantic_palette', None)

        gt_img_data = None
        gt_img_data_from = None
        gt_img_data_to = None
        pred_img_data = None
        pred_img_data_from = None
        pred_img_data_to = None
        
        drawn_img_from = None
        drawn_img_to = None

        if draw_gt and data_sample is not None and 'gt_sem_seg' in data_sample:
            gt_img_data = image
            assert classes is not None, 'class information is ' \
                                        'not provided when ' \
                                        'visualizing change ' \
                                        'deteaction results.'
            gt_img_data = self._draw_sem_seg(gt_img_data, data_sample.gt_sem_seg,
                                             classes, palette, with_labels)
        if draw_gt and data_sample is not None and 'gt_sem_seg_from' in data_sample \
            and 'gt_sem_seg_to' in data_sample:
            if exist_img_from_to:
                gt_img_data_from = image_from_to[0]
                gt_img_data_to = image_from_to[1]
            else:
                gt_img_data_from = np.zeros_like(image)
                gt_img_data_to = np.zeros_like(image)
            assert semantic_classes is not None, 'class information is ' \
                                        'not provided when ' \
                                        'visualizing change ' \
                                        'deteaction results.'
            gt_img_data_from = self._draw_sem_seg(gt_img_data_from,
                                             data_sample.gt_sem_seg_from, semantic_classes,
                                             semantic_palette, with_labels)
            gt_img_data_to = self._draw_sem_seg(gt_img_data_to,
                                             data_sample.gt_sem_seg_to, semantic_classes,
                                             semantic_palette, with_labels)

        if (draw_pred and data_sample is not None
                and 'pred_sem_seg' in data_sample):
            pred_img_data = image
            assert classes is not None, 'class information is ' \
                                        'not provided when ' \
                                        'visualizing semantic ' \
                                        'segmentation results.'
            pred_img_data = self._draw_sem_seg(pred_img_data,
                                               data_sample.pred_sem_seg,
                                               classes, palette,
                                               with_labels)
            
        if (draw_pred and data_sample is not None and 'pred_sem_seg_from' in data_sample \
            and 'pred_sem_seg_to' in data_sample):
            if exist_img_from_to:
                pred_img_data_from = image_from_to[0]
                pred_img_data_to = image_from_to[1]
            else:
                pred_img_data_from = np.zeros_like(image)
                pred_img_data_to = np.zeros_like(image)
            assert semantic_classes is not None, 'class information is ' \
                                        'not provided when ' \
                                        'visualizing change ' \
                                        'deteaction results.'
            pred_img_data_from = self._draw_sem_seg(pred_img_data_from,
                                             data_sample.pred_sem_seg_from, semantic_classes,
                                             semantic_palette, with_labels)
            pred_img_data_to = self._draw_sem_seg(pred_img_data_to,
                                             data_sample.pred_sem_seg_to, semantic_classes,
                                             semantic_palette, with_labels)

        if gt_img_data is not None and pred_img_data is not None:
            drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
        elif gt_img_data is not None:
            drawn_img = gt_img_data
        else:
            drawn_img = pred_img_data

        if gt_img_data_from is not None and pred_img_data_from is not None:
            drawn_img_from = np.concatenate((gt_img_data_from, pred_img_data_from), axis=1)
        elif gt_img_data_from is not None:
            drawn_img_from = gt_img_data_from
        else:
            drawn_img_from = pred_img_data_from

        if gt_img_data_to is not None and pred_img_data_to is not None:
            drawn_img_to = np.concatenate((gt_img_data_to, pred_img_data_to), axis=1)
        elif gt_img_data_to is not None:
            drawn_img_to = gt_img_data_to
        else:
            drawn_img_to = pred_img_data_to

        if show:
            if drawn_img_from is not None and drawn_img_to is not None:
                drawn_img_cat = np.concatenate((drawn_img, drawn_img_from, drawn_img_to), axis=0)
                self.show(drawn_img_cat, win_name=name, wait_time=wait_time)
            else:
                self.show(drawn_img, win_name=name, wait_time=wait_time)

        if out_file is not None:
            if drawn_img_from is not None and drawn_img_to is not None:
                drawn_img_cat = np.concatenate((drawn_img, drawn_img_from, drawn_img_to), axis=0)
                mmcv.imwrite(mmcv.bgr2rgb(drawn_img_cat), out_file)
            else:
                mmcv.imwrite(mmcv.bgr2rgb(drawn_img), out_file)
        else:
            self.add_image(name, drawn_img, drawn_img_from, drawn_img_to, step)

    @master_only
    def add_image(self, name: str,
                  image: np.ndarray,
                  image_from: np.ndarray = None,
                  image_to: np.ndarray = None,
                  step: int = 0) -> None:
        """Record the image.

        Args:
            name (str): The image identifier.
            image (np.ndarray, optional): The image to be saved. The format
                should be RGB. Defaults to None.
            step (int): Global step value to record. Defaults to 0.
        """
        for vis_backend in self._vis_backends.values():
            vis_backend.add_image(name, image, image_from, image_to, step)  # type: ignore

    @master_only
    def set_image(self, image: np.ndarray) -> None:
        """Set the image to draw.

        Args:
            image (np.ndarray): The image to draw.
        """
        assert image is not None
        image = image.astype('uint8')
        self._image = image
        self.width, self.height = image.shape[1], image.shape[0]
        # print(image.shape)
        self._default_font_size = max(
            np.sqrt(self.height * self.width) // 90, 10)

        self.fig_save.set_size_inches(  # type: ignore
            self.width / self.dpi, self.height / self.dpi)
        # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
        self.ax_save.cla()
        self.ax_save.axis(False)
        self.ax_save.imshow(
            image,
            extent=(0, self.width, self.height, 0),
            interpolation='none')