Spaces:
Runtime error
Runtime error
File size: 19,143 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
# Copyright (c) Open-CD. All rights reserved.
import warnings
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
from mmengine.model import BaseModule
from torch.nn import functional as F
from torch.nn.modules.batchnorm import _BatchNorm
from torch.utils import checkpoint as cp
from mmseg.models.utils import SELayer, make_divisible
from opencd.registry import MODELS
class AsymGlobalAttn(BaseModule):
def __init__(self, dim, strip_kernel_size=21):
super().__init__()
self.norm = build_norm_layer(dict(type='mmpretrain.LN2d', eps=1e-6), dim)[1]
self.global_ = nn.Sequential(
nn.Conv2d(dim, dim, 1),
nn.Conv2d(dim, dim, (1, strip_kernel_size), padding=(0, (strip_kernel_size-1)//2), groups=dim),
nn.Conv2d(dim, dim, (strip_kernel_size, 1), padding=((strip_kernel_size-1)//2, 0), groups=dim)
)
self.v = nn.Conv2d(dim, dim, 1)
self.proj = nn.Conv2d(dim, dim, 1)
self.layer_scale = nn.Parameter(1e-6 * torch.ones((dim)), requires_grad=True)
def forward(self, x):
B, C, H, W = x.shape
identity = x
a = self.global_(x)
x = a * self.v(x)
x = self.proj(x)
x = self.norm(x)
x = self.layer_scale.unsqueeze(-1).unsqueeze(-1) * x + identity
return x
class PriorAttention(BaseModule):
def __init__(self,
channels,
num_paths=2,
attn_channels=None,
act_cfg=dict(type='ReLU'),
norm_cfg=dict(type='BN', requires_grad=True)):
super(PriorAttention, self).__init__()
self.num_paths = num_paths # `2` is supported.
attn_channels = attn_channels or channels // 16
attn_channels = max(attn_channels, 8)
self.fc_reduce = nn.Conv2d(channels, attn_channels, kernel_size=1, bias=False)
self.bn = build_norm_layer(norm_cfg, attn_channels)[1]
self.act = build_activation_layer(act_cfg)
self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False)
def forward(self, x1, x2):
x = torch.abs(x1 - x2)
attn = x.mean((2, 3), keepdim=True)
attn = self.fc_reduce(attn)
attn = self.bn(attn)
attn = self.act(attn)
attn = self.fc_select(attn)
B, C, H, W = attn.shape
attn1, attn2 = attn.reshape(B, self.num_paths, C // self.num_paths, H, W).transpose(0, 1)
attn1 = torch.sigmoid(attn1)
attn2 = torch.sigmoid(attn2)
return x1 * attn1 + x1, x2 * attn2 + x2
class StemBlock(BaseModule):
"""InvertedResidual block for MobileNetV2.
Args:
in_channels (int): The input channels of the InvertedResidual block.
out_channels (int): The output channels of the InvertedResidual block.
stride (int): Stride of the middle (first) 3x3 convolution.
expand_ratio (int): Adjusts number of channels of the hidden layer
in InvertedResidual by this amount.
dilation (int): Dilation rate of depthwise conv. Default: 1
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
Returns:
Tensor: The output tensor.
"""
def __init__(self,
in_channels,
out_channels,
stride,
expand_ratio,
dilation=1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'),
with_cp=False,
**kwargs):
super(StemBlock, self).__init__()
self.stride = stride
assert stride in [1, 2], f'stride must in [1, 2]. ' \
f'But received {stride}.'
self.with_cp = with_cp
self.use_res_connect = self.stride == 1 and in_channels == out_channels
hidden_dim = int(round(in_channels * expand_ratio))
layers = []
if expand_ratio != 1:
layers.append(
ConvModule(
in_channels=in_channels,
out_channels=hidden_dim,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**kwargs))
layers.extend([
ConvModule(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=3,
stride=stride,
padding=dilation,
dilation=dilation,
groups=hidden_dim,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**kwargs),
])
self.conv = nn.Sequential(*layers)
self.interact = PriorAttention(channels=hidden_dim)
self.post_conv = ConvModule(
in_channels=hidden_dim,
out_channels=out_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None,
**kwargs)
def forward(self, x):
x1, x2 = x
identity_x1 = x1
identity_x2 = x2
x1 = self.conv(x1)
x2 = self.conv(x2)
x1, x2 = self.interact(x1, x2)
x1 = self.post_conv(x1)
x2 = self.post_conv(x2)
if self.use_res_connect:
x1 = x1 + identity_x1
x2 = x2 + identity_x2
return x1, x2
class PriorFusion(BaseModule):
def __init__(self, channels, stack_nums=2):
super().__init__()
self.stem = nn.Sequential(
*[StemBlock(
in_channels=channels,
out_channels=channels,
stride=1,
expand_ratio=4) for _ in range(stack_nums)])
self.pseudo_fusion = nn.Sequential(
nn.Conv2d(channels * 2, channels * 2, 3, padding=1, groups=channels * 2),
build_norm_layer(dict(type='mmpretrain.LN2d', eps=1e-6), channels * 2)[1],
nn.GELU(),
nn.Conv2d(channels * 2, channels, 3, padding=1, groups=channels),
)
def forward(self, x1, x2):
B, C, H, W = x1.shape
identity_x1 = x1
identity_x2 = x2
x1, x2 = self.stem((x1, x2))
x1 = x1 + identity_x1
x2 = x2 + identity_x2
early_x = torch.cat([x1, x2], dim=1)
x = self.pseudo_fusion(early_x)
return early_x, x
class TinyBlock(BaseModule):
"""InvertedResidual block for MobileNetV2.
Args:
in_channels (int): The input channels of the InvertedResidual block.
out_channels (int): The output channels of the InvertedResidual block.
stride (int): Stride of the middle (first) 3x3 convolution.
expand_ratio (int): Adjusts number of channels of the hidden layer
in InvertedResidual by this amount.
dilation (int): Dilation rate of depthwise conv. Default: 1
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
Returns:
Tensor: The output tensor.
"""
def __init__(self,
in_channels,
out_channels,
stride,
expand_ratio,
dilation=1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'),
with_cp=False,
with_se=False,
**kwargs):
super(TinyBlock, self).__init__()
self.stride = stride
assert stride in [1, 2], f'stride must in [1, 2]. ' \
f'But received {stride}.'
self.with_cp = with_cp
self.use_res_connect = self.stride == 1 and in_channels == out_channels
hidden_dim = int(round(in_channels * expand_ratio))
layers = []
Attention_Layer = SELayer(hidden_dim) if with_se else nn.Identity()
if expand_ratio != 1:
layers.append(
ConvModule(
in_channels=in_channels,
out_channels=hidden_dim,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**kwargs))
layers.extend([
ConvModule(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=3,
stride=stride,
padding=dilation,
dilation=dilation,
groups=hidden_dim,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**kwargs),
Attention_Layer,
ConvModule(
in_channels=hidden_dim,
out_channels=out_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None,
**kwargs)
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
def _inner_forward(x):
if self.use_res_connect:
x = x + self.conv(x)
return x
else:
return self.conv(x)
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
@MODELS.register_module()
class TinyNet(BaseModule):
"""TinyNet backbone.
This backbone is the implementation of
Args:
output_early_x (bool): output early features before fusion.
Defaults to 'False'.
arch='B' (str): The model's architecture. It should be
one of architecture in ``TinyNet.change_extractor_settings``.
Defaults to 'B'.
stem_stack_nums (int): The number of stacked stem blocks.
use_global: (Sequence[bool]): whether use `AsymGlobalAttn` after
stages. Defaults: (True, True, True, True).
strip_kernel_size: (Sequence[int]): The strip kernel size of
`AsymGlobalAttn`. Defaults: (41, 31, 21, 11).
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Default: 1.0.
strides (Sequence[int], optional): Strides of the first block of each
layer. If not specified, default config in ``arch_setting`` will
be used.
dilations (Sequence[int]): Dilation of each layer.
out_indices (None or Sequence[int]): Output from which stages.
Default: (7, ).
frozen_stages (int): Stages to be frozen (all param fixed).
Default: -1, which means not freezing any parameters.
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
pretrained (str, optional): model pretrained path. Default: None
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
# Parameters to build layers. 3 parameters are needed to construct a
# layer, from left to right: expand_ratio, channel, num_blocks.
change_extractor_settings = {
'S': [[4, 16, 2], [6, 24, 2], [6, 32, 3], [6, 48, 1]],
'B': [[4, 16, 2], [6, 24, 2], [6, 32, 3], [6, 48, 1]],
'L': [[4, 16, 2], [6, 24, 2], [6, 32, 6], [6, 48, 1]],}
def __init__(self,
output_early_x=False,
arch='B',
stem_stack_nums=2,
use_global=(True, True, True, True),
strip_kernel_size=(41, 31, 21, 11),
widen_factor=1.,
strides=(1, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'),
norm_eval=False,
with_cp=False,
pretrained=None,
init_cfg=None):
super().__init__(init_cfg)
self.arch_settings = self.change_extractor_settings[arch]
self.pretrained = pretrained
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be setting at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is a deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
elif pretrained is None:
if init_cfg is None:
self.init_cfg = [
dict(type='Kaiming', layer='Conv2d'),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]
else:
raise TypeError('pretrained must be a str or None')
self.widen_factor = widen_factor
self.strides = strides
self.dilations = dilations
assert len(strides) == len(dilations) == len(self.arch_settings)
self.out_indices = out_indices
for index in out_indices:
if index not in range(0, 7):
raise ValueError('the item in out_indices must in '
f'range(0, 7). But received {index}')
if frozen_stages not in range(-1, 7):
raise ValueError('frozen_stages must be in range(-1, 7). '
f'But received {frozen_stages}')
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.in_channels = make_divisible(16 * widen_factor, 8)
self.conv1 = ConvModule(
in_channels=3,
out_channels=self.in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.fusion_block = PriorFusion(self.in_channels, stem_stack_nums)
self.layers = []
self.use_global = use_global
self.strip_kernel_size = strip_kernel_size
for i, layer_cfg in enumerate(self.arch_settings):
expand_ratio, channel, num_blocks = layer_cfg
stride = self.strides[i]
dilation = self.dilations[i]
out_channels = make_divisible(channel * widen_factor, 8)
inverted_res_layer = self.make_layer(
out_channels=out_channels,
num_blocks=num_blocks,
stride=stride,
dilation=dilation,
expand_ratio=expand_ratio,
use_global=use_global[i],
strip_kernel_size=self.strip_kernel_size[i])
layer_name = f'layer{i + 1}'
self.add_module(layer_name, inverted_res_layer)
self.layers.append(layer_name)
self.output_early_x = output_early_x
def make_layer(self, out_channels, num_blocks, stride, dilation,
expand_ratio, use_global, strip_kernel_size):
"""Stack InvertedResidual blocks to build a layer for MobileNetV2.
Args:
out_channels (int): out_channels of block.
num_blocks (int): Number of blocks.
stride (int): Stride of the first block.
dilation (int): Dilation of the first block.
expand_ratio (int): Expand the number of channels of the
hidden layer in InvertedResidual by this ratio.
"""
layers = []
for i in range(num_blocks):
layers.append(
TinyBlock(
self.in_channels,
out_channels,
stride if i == 0 else 1,
expand_ratio=expand_ratio,
dilation=dilation if i == 0 else 1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
with_cp=self.with_cp))
self.in_channels = out_channels
# after stage
if use_global:
layers.append(
AsymGlobalAttn(out_channels, strip_kernel_size)
)
return nn.Sequential(*layers)
def forward(self, x1, x2):
x1 = self.conv1(x1)
x2 = self.conv1(x2)
early_x, x = self.fusion_block(x1, x2)
if self.output_early_x:
outs = [early_x]
else:
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
else:
return tuple(outs)
def _freeze_stages(self):
if self.frozen_stages >= 0:
for param in self.conv1.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
layer = getattr(self, f'layer{i}')
layer.eval()
for param in layer.parameters():
param.requires_grad = False
def train(self, mode=True):
super(TinyNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval() |