Spaces:
Runtime error
Runtime error
File size: 12,872 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""
C. HAN, C. WU, H. GUO, M. HU, AND H. CHEN,
“HANET: A HIERARCHICAL ATTENTION NETWORK FOR CHANGE DETECTION WITH BI-TEMPORAL VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES,”
IEEE J. SEL. TOP. APPL. EARTH OBS. REMOTE SENS., PP. 1-17, 2023, DOI: 10.1109/JSTARS.2023.3264802.
Some code in this file is borrowed from:
https://github.com/ChengxiHAN/HANet-CD/blob/main/models/HANet.py
"""
import torch
import torch.nn as nn
from opencd.registry import MODELS
class CAM_Module(nn.Module):
""" Channel attention module"""
def __init__(self, in_dim):
super(CAM_Module, self).__init__()
self.chanel_in = in_dim
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
m_batchsize, C, height, width = x.size()
proj_query = x.view(m_batchsize, C, -1)
proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
energy = torch.bmm(proj_query, proj_key)
energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy) - energy
attention = self.softmax(energy_new)
proj_value = x.view(m_batchsize, C, -1)
out = torch.bmm(attention, proj_value)
out = out.view(m_batchsize, C, height, width)
out = self.gamma * out + x
return out
class Conv_CAM_Layer(nn.Module):
def __init__(self, in_ch, out_in, use_pam=False):
super(Conv_CAM_Layer, self).__init__()
self.attn = nn.Sequential(
nn.Conv2d(in_ch, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.PReLU(),
CAM_Module(32),
nn.Conv2d(32, out_in, kernel_size=3, padding=1),
nn.BatchNorm2d(out_in),
nn.PReLU()
)
def forward(self, x):
return self.attn(x)
class FEC(nn.Module):
"""feature extraction cell"""
#convolutional block
def __init__(self, in_ch, mid_ch, out_ch):
super(FEC, self).__init__()
self.activation = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_ch, mid_ch, kernel_size=3, padding=1,bias=True)
self.bn1 = nn.BatchNorm2d(mid_ch)
self.conv2 = nn.Conv2d(mid_ch, out_ch, kernel_size=1, stride=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_ch)
def forward(self, x):
x = self.conv1(x)
identity = x
x = self.bn1(x)
x = self.activation(x)
x = self.conv2(x)
x = self.bn2(x)
output = self.activation(x + identity)
return output
class RowAttention(nn.Module):
def __init__(self, in_dim, q_k_dim, use_pam=False):
'''
Parameters
----------
in_dim : int
channel of input img tensor
q_k_dim: int
channel of Q, K vector
device : torch.device
'''
super(RowAttention, self).__init__()
self.in_dim = in_dim
self.q_k_dim = q_k_dim
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=self.q_k_dim, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=self.q_k_dim, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=self.in_dim, kernel_size=1)
self.softmax = nn.Softmax(dim=2)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
'''
Parameters
----------
x : Tensor
4-D , (batch, in_dims, height, width) -- (b,c1,h,w)
'''
b, _, h, w = x.size()
Q = self.query_conv(x) # size = (b,c2, h,w)
K = self.key_conv(x) # size = (b, c2, h, w)
V = self.value_conv(x) # size = (b, c1,h,w)
Q = Q.permute(0, 2, 1, 3).contiguous().view(b * h, -1, w).permute(0, 2, 1) # size = (b*h,w,c2)
K = K.permute(0, 2, 1, 3).contiguous().view(b * h, -1, w) # size = (b*h,c2,w)
V = V.permute(0, 2, 1, 3).contiguous().view(b * h, -1, w) # size = (b*h, c1,w)
row_attn = torch.bmm(Q, K)
row_attn = self.softmax(row_attn)
out = torch.bmm(V, row_attn.permute(0, 2, 1))
out = out.view(b, h, -1, w).permute(0, 2, 1, 3)
out = self.gamma * out + x
return out
class ColAttention(nn.Module):
def __init__(self, in_dim, q_k_dim, use_pam=False):
'''
Parameters
----------
in_dim : int
channel of input img tensor
q_k_dim: int
channel of Q, K vector
device : torch.device
'''
super(ColAttention, self).__init__()
self.in_dim = in_dim
self.q_k_dim = q_k_dim
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=self.q_k_dim, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=self.q_k_dim, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=self.in_dim, kernel_size=1)
self.softmax = nn.Softmax(dim=2)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
'''
Parameters
----------
x : Tensor
4-D , (batch, in_dims, height, width) -- (b,c1,h,w)
'''
b, _, h, w = x.size()
Q = self.query_conv(x) # size = (b,c2, h,w)
K = self.key_conv(x) # size = (b, c2, h, w)
V = self.value_conv(x) # size = (b, c1,h,w)
Q = Q.permute(0, 3, 1, 2).contiguous().view(b * w, -1, h).permute(0, 2, 1) # size = (b*w,h,c2)
K = K.permute(0, 3, 1, 2).contiguous().view(b * w, -1, h) # size = (b*w,c2,h)
V = V.permute(0, 3, 1, 2).contiguous().view(b * w, -1, h) # size = (b*w,c1,h)
# size = (b*w,h,h) [:,i,j]
col_attn = torch.bmm(Q, K)
col_attn = self.softmax(col_attn)
out = torch.bmm(V, col_attn.permute(0, 2, 1))
# size = (b,c1,h,w)
out = out.view(b, w, -1, h).permute(0, 2, 3, 1)
out = self.gamma * out + x
return out
@MODELS.register_module()
class HAN(nn.Module):
"""HANet"""
def __init__(self, in_channels, base_channel=40):
super(HAN, self).__init__()
torch.nn.Module.dump_patches = True
n1 = base_channel # the initial number of channels of feature map
filters = [n1, n1 * 2, n1 * 4, n1 * 8]
self.conv0_0 = nn.Conv2d(in_channels, n1, kernel_size=5, padding=2, stride=1)
self.conv0 = FEC(filters[0], filters[0], filters[0])
self.conv2 = FEC(filters[0], filters[1], filters[1])
self.conv4 = FEC(filters[1], filters[2], filters[2])
self.conv5 = FEC(filters[2], filters[3], filters[3])
self.conv6 = nn.Conv2d(sum(filters), filters[1], kernel_size=1, stride=1)
self.conv6_1_1 = nn.Conv2d(filters[0] * 2, filters[0], padding=1, kernel_size=3, groups=filters[0] // 2,dilation=1)
self.conv6_1_2 = nn.Conv2d(filters[0] * 2, filters[0], padding=2, kernel_size=3, groups=filters[0] // 2,dilation=2)
self.conv6_1_3 = nn.Conv2d(filters[0] * 2, filters[0], padding=3, kernel_size=3, groups=filters[0] // 2,dilation=3)
self.conv6_1_4 = nn.Conv2d(filters[0] * 2, filters[0], padding=4, kernel_size=3, groups=filters[0] // 2,dilation=4)
self.conv1_1 = nn.Conv2d(filters[0] * 4, filters[0], kernel_size=1, stride=1)
self.conv6_2_1 = nn.Conv2d(filters[1] * 2, filters[1], padding=1, kernel_size=3, groups=filters[1] // 2, dilation=1)
self.conv6_2_2 = nn.Conv2d(filters[1] * 2, filters[1], padding=2, kernel_size=3, groups=filters[1] // 2, dilation=2)
self.conv6_2_3 = nn.Conv2d(filters[1] * 2, filters[1], padding=3, kernel_size=3, groups=filters[1] // 2, dilation=3)
self.conv6_2_4 = nn.Conv2d(filters[1] * 2, filters[1], padding=4, kernel_size=3, groups=filters[1] // 2, dilation=4)
self.conv2_1 = nn.Conv2d(filters[1] * 4, filters[1], kernel_size=1, stride=1)
self.conv6_3_1 = nn.Conv2d(filters[2] * 2, filters[2], padding=1, kernel_size=3, groups=filters[2] // 2, dilation=1)
self.conv6_3_2 = nn.Conv2d(filters[2] * 2, filters[2], padding=2, kernel_size=3, groups=filters[2] // 2, dilation=2)
self.conv6_3_3 = nn.Conv2d(filters[2] * 2, filters[2], padding=3, kernel_size=3, groups=filters[2] // 2, dilation=3)
self.conv6_3_4 = nn.Conv2d(filters[2] * 2, filters[2], padding=4, kernel_size=3, groups=filters[2] // 2, dilation=4)
self.conv3_1 = nn.Conv2d(filters[2] * 4, filters[2], kernel_size=1, stride=1)
self.conv6_4_1 = nn.Conv2d(filters[3]*2, filters[3], padding=1, kernel_size=3, groups=filters[3]//2, dilation=1)
self.conv6_4_2 = nn.Conv2d(filters[3]*2, filters[3], padding=2, kernel_size=3, groups=filters[3]//2, dilation=2)
self.conv6_4_3 = nn.Conv2d(filters[3]*2, filters[3], padding=3, kernel_size=3, groups=filters[3]//2, dilation=3)
self.conv6_4_4 = nn.Conv2d(filters[3]*2, filters[3], padding=4, kernel_size=3, groups=filters[3]//2, dilation=4)
self.conv4_1 = nn.Conv2d(filters[3]*4, filters[3], kernel_size=1, stride=1)
# SA
self.cam_attention_1 = Conv_CAM_Layer(filters[0], filters[0], False) #SA4
self.cam_attention_2 = Conv_CAM_Layer(filters[1], filters[1], False) #SA3
self.cam_attention_3 = Conv_CAM_Layer(filters[2], filters[2], False) #SA2
self.cam_attention_4 = Conv_CAM_Layer(filters[3], filters[3], False) #SA1
#Row Attention
self.row_attention_1 = RowAttention(filters[0], filters[0], False) # SA4
self.row_attention_2 = RowAttention(filters[1], filters[1], False) # SA3
self.row_attention_3 = RowAttention(filters[2], filters[2], False) # SA2
self.row_attention_4 = RowAttention(filters[3], filters[3], False) # SA1
# Col Attention
self.col_attention_1 = ColAttention(filters[0], filters[0], False) # SA4
self.col_attention_2 = ColAttention(filters[1], filters[1], False) # SA3
self.col_attention_3 = ColAttention(filters[2], filters[2], False) # SA2
self.col_attention_4 = ColAttention(filters[3], filters[3], False) # SA1
self.c4_conv = nn.Conv2d(filters[3], filters[1], kernel_size=3, padding=1)
self.c3_conv = nn.Conv2d(filters[2], filters[1], kernel_size=3, padding=1)
self.c2_conv = nn.Conv2d(filters[1], filters[1], kernel_size=3, padding=1)
self.c1_conv = nn.Conv2d(filters[0], filters[0], kernel_size=3, padding=1)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
self.Up1 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.Up2 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False)
self.Up3 = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=False)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x1, x2):
x1 = self.conv0(self.conv0_0(x1)) # Output of the first scale
x3 = self.conv2(self.pool(x1))
x4 = self.conv4(self.pool(x3))
A_F4 = self.conv5(self.pool(x4))
x2 = self.conv0(self.conv0_0(x2))
x5 = self.conv2(self.pool(x2))
x6 = self.conv4(self.pool(x5))
A_F8 = self.conv5(self.pool(x6))
c4_1 = self.conv4_1(
torch.cat([self.conv6_4_1(torch.cat([A_F4, A_F8], 1)), self.conv6_4_2(torch.cat([A_F4, A_F8], 1)),
self.conv6_4_3(torch.cat([A_F4, A_F8], 1)), self.conv6_4_4(torch.cat([A_F4, A_F8], 1))], 1))
c4 = self.cam_attention_4(c4_1) + self.row_attention_4(self.col_attention_4(c4_1))
c3_1 = (self.conv3_1(torch.cat(
[self.conv6_3_1(torch.cat([x4, x6], 1)), self.conv6_3_2(torch.cat([x4, x6], 1)),
self.conv6_3_3(torch.cat([x4, x6], 1)), self.conv6_3_4(torch.cat([x4, x6], 1))], 1)))
c3 = torch.cat([(self.cam_attention_3(c3_1)+self.row_attention_3(self.col_attention_3(c3_1))), self.Up1(c4)], 1)
c2_1 = (self.conv2_1(torch.cat(
[self.conv6_2_1(torch.cat([x3, x5], 1)), self.conv6_2_2(torch.cat([x3, x5], 1)),
self.conv6_2_3(torch.cat([x3, x5], 1)), self.conv6_2_4(torch.cat([x3, x5], 1))], 1)))
c2 = torch.cat([(self.cam_attention_2(c2_1)+self.row_attention_2(self.col_attention_2(c2_1))), self.Up1(c3)], 1)
c1_1 = (self.conv1_1(torch.cat(
[self.conv6_1_1(torch.cat([x1, x2], 1)), self.conv6_1_2(torch.cat([x1, x2], 1)),
self.conv6_1_3(torch.cat([x1, x2], 1)), self.conv6_1_4(torch.cat([x1, x2], 1))], 1)))
c1 = torch.cat([(self.cam_attention_1(c1_1)+self.row_attention_1(self.col_attention_1(c1_1))), self.Up1(c2)], 1)
out1 = self.conv6(c1)
return (out1, )
|