Spaces:
Runtime error
Runtime error
File size: 12,234 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# Copyright (c) Open-CD. All rights reserved.
import copy
import logging
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Sequence, Union
import numpy as np
import torch
from mmengine.dist import (broadcast_object_list, collect_results,
is_main_process)
from mmengine.evaluator.metric import _to_cpu
from mmengine.logging import MMLogger, print_log
from prettytable import PrettyTable
from mmseg.evaluation import IoUMetric
from opencd.registry import METRICS
@METRICS.register_module()
class SCDMetric(IoUMetric):
"""Change Detection evaluation metric.
Args:
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to 'binary'.
semantic_prefix (str, optional): The prefix that will be added in the
metric names to disambiguate homonymous metrics of different
evaluators. Defaults to 'semantic'.
cal_sek bool: Whether to calculate the separated kappa (SeK)
coefficient. Defaults: False.
"""
def __init__(self,
prefix: Optional[str] = 'binary',
semantic_prefix: Optional[str] = 'semantic',
cal_sek: bool = False,
**kwargs) -> None:
super().__init__(prefix=prefix, **kwargs)
self.semantic_results: List[Any] = []
self.semantic_prefix = semantic_prefix
self.cal_sek = cal_sek
def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
"""Process one batch of data and data_samples.
The processed results should be stored in ``self.results``, which will
be used to compute the metrics when all batches have been processed.
Args:
data_batch (dict): A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from the model.
"""
num_classes = len(self.dataset_meta['classes'])
num_semantic_classes = len(self.dataset_meta['semantic_classes'])
for data_sample in data_samples:
pred_label = data_sample['pred_sem_seg']['data'].squeeze()
label = data_sample['gt_sem_seg']['data'].squeeze().to(pred_label)
pred_label_from = data_sample['pred_sem_seg_from']['data'].squeeze()
label_from = data_sample['gt_sem_seg_from']['data'].squeeze().to(pred_label_from)
pred_label_to = data_sample['pred_sem_seg_to']['data'].squeeze()
label_to = data_sample['gt_sem_seg_to']['data'].squeeze().to(pred_label_to)
self.results.append(
self.intersect_and_union(pred_label, label, num_classes,
self.ignore_index))
# for semantic pred
self.semantic_results.append(
self.intersect_and_union(pred_label_from, label_from, num_semantic_classes,
self.ignore_index))
self.semantic_results.append(
self.intersect_and_union(pred_label_to, label_to, num_semantic_classes,
self.ignore_index))
def get_sek(self, results: list) -> np.array:
"""calculate the Sek value.
Args:
pre_eval_results (list[tuple[torch.Tensor]]): per image eval results
for computing evaluation metric
Returns:
[torch.tensor]: The Sek value.
"""
assert len(results) == 4
hist_00 = sum(results[0])[0]
hist_00_list = torch.zeros(len(results[0][0]))
hist_00_list[0] = hist_00
total_area_intersect = sum(results[0]) - hist_00_list
total_area_pred_label = sum(results[2]) - hist_00_list
total_area_label = sum(results[3]) - hist_00_list
# foreground
fg_intersect_sum = total_area_label[1:].sum(
) - total_area_pred_label[0]
fg_area_union_sum = total_area_label.sum()
po = total_area_intersect.sum() / total_area_label.sum()
pe = (total_area_label * total_area_pred_label).sum() / \
total_area_pred_label.sum() ** 2
kappa0 = (po - pe) / (1 - pe)
# the `iou_fg` is equal to the binary `changed` iou.
iou_fg = fg_intersect_sum / fg_area_union_sum
sek = (kappa0 * torch.exp(iou_fg)) / torch.e
return sek.numpy() # consistent with other metrics.
def compute_metrics(self, binary_results: list, semantic_results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
binary_results (list): The processed results of each batch.
semantic_results (list): The semantic results of each batch
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results. The key
mainly includes aAcc, mIoU, mAcc, mDice, mFscore, mPrecision,
mRecall.
"""
logger: MMLogger = MMLogger.get_current_instance()
# convert list of tuples to tuple of lists, e.g.
# [(A_1, B_1, C_1, D_1), ..., (A_n, B_n, C_n, D_n)] to
# ([A_1, ..., A_n], ..., [D_1, ..., D_n])
binary_results = tuple(zip(*binary_results))
semantic_results = tuple(zip(*semantic_results))
assert len(binary_results) == 4 and len(semantic_results) == 4
# for binary results
binary_total_area_intersect = sum(binary_results[0])
binary_total_area_union = sum(binary_results[1])
binary_total_area_pred_label = sum(binary_results[2])
binary_total_area_label = sum(binary_results[3])
binary_ret_metrics = self.total_area_to_metrics(
binary_total_area_intersect, binary_total_area_union, binary_total_area_pred_label,
binary_total_area_label, self.metrics, self.nan_to_num, self.beta)
binary_class_names = self.dataset_meta['classes']
# summary table
binary_ret_metrics_summary = OrderedDict({
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
for ret_metric, ret_metric_value in binary_ret_metrics.items()
})
binary_metrics = dict()
for key, val in binary_ret_metrics_summary.items():
if key == 'aAcc':
binary_metrics[key] = val
else:
binary_metrics['m' + key] = val
# each class table
binary_ret_metrics.pop('aAcc', None)
binary_ret_metrics_class = OrderedDict({
ret_metric: np.round(ret_metric_value * 100, 2)
for ret_metric, ret_metric_value in binary_ret_metrics.items()
})
binary_ret_metrics_class.update({'Class': binary_class_names})
binary_ret_metrics_class.move_to_end('Class', last=False)
binary_class_table_data = PrettyTable()
for key, val in binary_ret_metrics_class.items():
binary_class_table_data.add_column(key, val)
print_log('per binary class results:', logger)
print_log('\n' + binary_class_table_data.get_string(), logger=logger)
# for semantic results
semantic_total_area_intersect = sum(semantic_results[0])
semantic_total_area_union = sum(semantic_results[1])
semantic_total_area_pred_label = sum(semantic_results[2])
semantic_total_area_label = sum(semantic_results[3])
semantic_ret_metrics = self.total_area_to_metrics(
semantic_total_area_intersect, semantic_total_area_union, semantic_total_area_pred_label,
semantic_total_area_label, self.metrics, self.nan_to_num, self.beta)
semantic_class_names = self.dataset_meta['semantic_classes']
# summary table
semantic_ret_metrics_summary = OrderedDict({
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
for ret_metric, ret_metric_value in semantic_ret_metrics.items()
})
# for semantic change detection
if self.cal_sek:
sek = self.get_sek(semantic_results)
semantic_ret_metrics_summary.update({'Sek': np.round(sek * 100, 2)})
semantic_ret_metrics_summary.update({'SCD_Score': \
np.round(0.3 * binary_ret_metrics_summary['IoU'] + 0.7 * sek * 100, 2)})
semantic_metrics = dict()
for key, val in semantic_ret_metrics_summary.items():
if key in ['aAcc', 'Sek', 'SCD_Score']:
semantic_metrics[key] = val
else:
semantic_metrics['m' + key] = val
# each class table
semantic_ret_metrics.pop('aAcc', None)
semantic_ret_metrics_class = OrderedDict({
ret_metric: np.round(ret_metric_value * 100, 2)
for ret_metric, ret_metric_value in semantic_ret_metrics.items()
})
semantic_ret_metrics_class.update({'Class': semantic_class_names})
semantic_ret_metrics_class.move_to_end('Class', last=False)
semantic_class_table_data = PrettyTable()
for key, val in semantic_ret_metrics_class.items():
semantic_class_table_data.add_column(key, val)
print_log('per semantic class results:', logger)
print_log('\n' + semantic_class_table_data.get_string(), logger=logger)
return binary_metrics, semantic_metrics
def evaluate(self, size: int) -> dict:
"""Evaluate the model performance of the whole dataset after processing
all batches.
Args:
size (int): Length of the entire validation dataset. When batch
size > 1, the dataloader may pad some data samples to make
sure all ranks have the same length of dataset slice. The
``collect_results`` function will drop the padded data based on
this size.
Returns:
dict: Evaluation metrics dict on the val dataset. The keys are the
names of the metrics, and the values are corresponding results.
"""
if len(self.results) == 0:
print_log(
f'{self.__class__.__name__} got empty `self.results`. Please '
'ensure that the processed results are properly added into '
'`self.results` in `process` method.',
logger='current',
level=logging.WARNING)
if len(self.semantic_results) == 0:
print_log(
f'{self.__class__.__name__} got empty `self.semantic_results`. '
'Please ensure that the processed results are properly added '
'into `self.semantic_results` in `process` method.',
logger='current',
level=logging.WARNING)
binary_results = collect_results(self.results, size, self.collect_device)
semantic_results = collect_results(self.semantic_results, \
size * 2, self.collect_device)
if is_main_process():
# cast all tensors in results list to cpu
binary_results = _to_cpu(binary_results)
semantic_results = _to_cpu(semantic_results)
_binary_metrics, _semantic_metrics = \
self.compute_metrics(binary_results, semantic_results) # type: ignore
# Add prefix to metric names
if self.prefix:
_binary_metrics = {
'/'.join((self.prefix, k)): v
for k, v in _binary_metrics.items()
}
_semantic_metrics = {
'/'.join((self.semantic_prefix, k)): v
for k, v in _semantic_metrics.items()
}
_metrics = {**_binary_metrics, **_semantic_metrics}
metrics = [_metrics]
else:
metrics = [None] # type: ignore
broadcast_object_list(metrics)
# reset the results list
self.results.clear()
self.semantic_results.clear()
return metrics[0]
|