Spaces:
Runtime error
Runtime error
File size: 16,047 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# Copyright (c) OpenMMLab. All rights reserved.
"""Modified from https://github.com/MichaelFan01/STDC-Seg."""
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule, ModuleList, Sequential
from mmseg.registry import MODELS
from ..utils import resize
from .bisenetv1 import AttentionRefinementModule
class STDCModule(BaseModule):
"""STDCModule.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels before scaling.
stride (int): The number of stride for the first conv layer.
norm_cfg (dict): Config dict for normalization layer. Default: None.
act_cfg (dict): The activation config for conv layers.
num_convs (int): Numbers of conv layers.
fusion_type (str): Type of fusion operation. Default: 'add'.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
stride,
norm_cfg=None,
act_cfg=None,
num_convs=4,
fusion_type='add',
init_cfg=None):
super().__init__(init_cfg=init_cfg)
assert num_convs > 1
assert fusion_type in ['add', 'cat']
self.stride = stride
self.with_downsample = True if self.stride == 2 else False
self.fusion_type = fusion_type
self.layers = ModuleList()
conv_0 = ConvModule(
in_channels, out_channels // 2, kernel_size=1, norm_cfg=norm_cfg)
if self.with_downsample:
self.downsample = ConvModule(
out_channels // 2,
out_channels // 2,
kernel_size=3,
stride=2,
padding=1,
groups=out_channels // 2,
norm_cfg=norm_cfg,
act_cfg=None)
if self.fusion_type == 'add':
self.layers.append(nn.Sequential(conv_0, self.downsample))
self.skip = Sequential(
ConvModule(
in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=1,
groups=in_channels,
norm_cfg=norm_cfg,
act_cfg=None),
ConvModule(
in_channels,
out_channels,
1,
norm_cfg=norm_cfg,
act_cfg=None))
else:
self.layers.append(conv_0)
self.skip = nn.AvgPool2d(kernel_size=3, stride=2, padding=1)
else:
self.layers.append(conv_0)
for i in range(1, num_convs):
out_factor = 2**(i + 1) if i != num_convs - 1 else 2**i
self.layers.append(
ConvModule(
out_channels // 2**i,
out_channels // out_factor,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, inputs):
if self.fusion_type == 'add':
out = self.forward_add(inputs)
else:
out = self.forward_cat(inputs)
return out
def forward_add(self, inputs):
layer_outputs = []
x = inputs.clone()
for layer in self.layers:
x = layer(x)
layer_outputs.append(x)
if self.with_downsample:
inputs = self.skip(inputs)
return torch.cat(layer_outputs, dim=1) + inputs
def forward_cat(self, inputs):
x0 = self.layers[0](inputs)
layer_outputs = [x0]
for i, layer in enumerate(self.layers[1:]):
if i == 0:
if self.with_downsample:
x = layer(self.downsample(x0))
else:
x = layer(x0)
else:
x = layer(x)
layer_outputs.append(x)
if self.with_downsample:
layer_outputs[0] = self.skip(x0)
return torch.cat(layer_outputs, dim=1)
class FeatureFusionModule(BaseModule):
"""Feature Fusion Module. This module is different from FeatureFusionModule
in BiSeNetV1. It uses two ConvModules in `self.attention` whose inter
channel number is calculated by given `scale_factor`, while
FeatureFusionModule in BiSeNetV1 only uses one ConvModule in
`self.conv_atten`.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
scale_factor (int): The number of channel scale factor.
Default: 4.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): The activation config for conv layers.
Default: dict(type='ReLU').
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
scale_factor=4,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
channels = out_channels // scale_factor
self.conv0 = ConvModule(
in_channels, out_channels, 1, norm_cfg=norm_cfg, act_cfg=act_cfg)
self.attention = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
ConvModule(
out_channels,
channels,
1,
norm_cfg=None,
bias=False,
act_cfg=act_cfg),
ConvModule(
channels,
out_channels,
1,
norm_cfg=None,
bias=False,
act_cfg=None), nn.Sigmoid())
def forward(self, spatial_inputs, context_inputs):
inputs = torch.cat([spatial_inputs, context_inputs], dim=1)
x = self.conv0(inputs)
attn = self.attention(x)
x_attn = x * attn
return x_attn + x
@MODELS.register_module()
class STDCNet(BaseModule):
"""This backbone is the implementation of `Rethinking BiSeNet For Real-time
Semantic Segmentation <https://arxiv.org/abs/2104.13188>`_.
Args:
stdc_type (int): The type of backbone structure,
`STDCNet1` and`STDCNet2` denotes two main backbones in paper,
whose FLOPs is 813M and 1446M, respectively.
in_channels (int): The num of input_channels.
channels (tuple[int]): The output channels for each stage.
bottleneck_type (str): The type of STDC Module type, the value must
be 'add' or 'cat'.
norm_cfg (dict): Config dict for normalization layer.
act_cfg (dict): The activation config for conv layers.
num_convs (int): Numbers of conv layer at each STDC Module.
Default: 4.
with_final_conv (bool): Whether add a conv layer at the Module output.
Default: True.
pretrained (str, optional): Model pretrained path. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
Example:
>>> import torch
>>> stdc_type = 'STDCNet1'
>>> in_channels = 3
>>> channels = (32, 64, 256, 512, 1024)
>>> bottleneck_type = 'cat'
>>> inputs = torch.rand(1, 3, 1024, 2048)
>>> self = STDCNet(stdc_type, in_channels,
... channels, bottleneck_type).eval()
>>> outputs = self.forward(inputs)
>>> for i in range(len(outputs)):
... print(f'outputs[{i}].shape = {outputs[i].shape}')
outputs[0].shape = torch.Size([1, 256, 128, 256])
outputs[1].shape = torch.Size([1, 512, 64, 128])
outputs[2].shape = torch.Size([1, 1024, 32, 64])
"""
arch_settings = {
'STDCNet1': [(2, 1), (2, 1), (2, 1)],
'STDCNet2': [(2, 1, 1, 1), (2, 1, 1, 1, 1), (2, 1, 1)]
}
def __init__(self,
stdc_type,
in_channels,
channels,
bottleneck_type,
norm_cfg,
act_cfg,
num_convs=4,
with_final_conv=False,
pretrained=None,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
assert stdc_type in self.arch_settings, \
f'invalid structure {stdc_type} for STDCNet.'
assert bottleneck_type in ['add', 'cat'],\
f'bottleneck_type must be `add` or `cat`, got {bottleneck_type}'
assert len(channels) == 5,\
f'invalid channels length {len(channels)} for STDCNet.'
self.in_channels = in_channels
self.channels = channels
self.stage_strides = self.arch_settings[stdc_type]
self.prtrained = pretrained
self.num_convs = num_convs
self.with_final_conv = with_final_conv
self.stages = ModuleList([
ConvModule(
self.in_channels,
self.channels[0],
kernel_size=3,
stride=2,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
ConvModule(
self.channels[0],
self.channels[1],
kernel_size=3,
stride=2,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
])
# `self.num_shallow_features` is the number of shallow modules in
# `STDCNet`, which is noted as `Stage1` and `Stage2` in original paper.
# They are both not used for following modules like Attention
# Refinement Module and Feature Fusion Module.
# Thus they would be cut from `outs`. Please refer to Figure 4
# of original paper for more details.
self.num_shallow_features = len(self.stages)
for strides in self.stage_strides:
idx = len(self.stages) - 1
self.stages.append(
self._make_stage(self.channels[idx], self.channels[idx + 1],
strides, norm_cfg, act_cfg, bottleneck_type))
# After appending, `self.stages` is a ModuleList including several
# shallow modules and STDCModules.
# (len(self.stages) ==
# self.num_shallow_features + len(self.stage_strides))
if self.with_final_conv:
self.final_conv = ConvModule(
self.channels[-1],
max(1024, self.channels[-1]),
1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def _make_stage(self, in_channels, out_channels, strides, norm_cfg,
act_cfg, bottleneck_type):
layers = []
for i, stride in enumerate(strides):
layers.append(
STDCModule(
in_channels if i == 0 else out_channels,
out_channels,
stride,
norm_cfg,
act_cfg,
num_convs=self.num_convs,
fusion_type=bottleneck_type))
return Sequential(*layers)
def forward(self, x):
outs = []
for stage in self.stages:
x = stage(x)
outs.append(x)
if self.with_final_conv:
outs[-1] = self.final_conv(outs[-1])
outs = outs[self.num_shallow_features:]
return tuple(outs)
@MODELS.register_module()
class STDCContextPathNet(BaseModule):
"""STDCNet with Context Path. The `outs` below is a list of three feature
maps from deep to shallow, whose height and width is from small to big,
respectively. The biggest feature map of `outs` is outputted for
`STDCHead`, where Detail Loss would be calculated by Detail Ground-truth.
The other two feature maps are used for Attention Refinement Module,
respectively. Besides, the biggest feature map of `outs` and the last
output of Attention Refinement Module are concatenated for Feature Fusion
Module. Then, this fusion feature map `feat_fuse` would be outputted for
`decode_head`. More details please refer to Figure 4 of original paper.
Args:
backbone_cfg (dict): Config dict for stdc backbone.
last_in_channels (tuple(int)), The number of channels of last
two feature maps from stdc backbone. Default: (1024, 512).
out_channels (int): The channels of output feature maps.
Default: 128.
ffm_cfg (dict): Config dict for Feature Fusion Module. Default:
`dict(in_channels=512, out_channels=256, scale_factor=4)`.
upsample_mode (str): Algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'``. Default: ``'nearest'``.
align_corners (str): align_corners argument of F.interpolate. It
must be `None` if upsample_mode is ``'nearest'``. Default: None.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
Return:
outputs (tuple): The tuple of list of output feature map for
auxiliary heads and decoder head.
"""
def __init__(self,
backbone_cfg,
last_in_channels=(1024, 512),
out_channels=128,
ffm_cfg=dict(
in_channels=512, out_channels=256, scale_factor=4),
upsample_mode='nearest',
align_corners=None,
norm_cfg=dict(type='BN'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.backbone = MODELS.build(backbone_cfg)
self.arms = ModuleList()
self.convs = ModuleList()
for channels in last_in_channels:
self.arms.append(AttentionRefinementModule(channels, out_channels))
self.convs.append(
ConvModule(
out_channels,
out_channels,
3,
padding=1,
norm_cfg=norm_cfg))
self.conv_avg = ConvModule(
last_in_channels[0], out_channels, 1, norm_cfg=norm_cfg)
self.ffm = FeatureFusionModule(**ffm_cfg)
self.upsample_mode = upsample_mode
self.align_corners = align_corners
def forward(self, x):
outs = list(self.backbone(x))
avg = F.adaptive_avg_pool2d(outs[-1], 1)
avg_feat = self.conv_avg(avg)
feature_up = resize(
avg_feat,
size=outs[-1].shape[2:],
mode=self.upsample_mode,
align_corners=self.align_corners)
arms_out = []
for i in range(len(self.arms)):
x_arm = self.arms[i](outs[len(outs) - 1 - i]) + feature_up
feature_up = resize(
x_arm,
size=outs[len(outs) - 1 - i - 1].shape[2:],
mode=self.upsample_mode,
align_corners=self.align_corners)
feature_up = self.convs[i](feature_up)
arms_out.append(feature_up)
feat_fuse = self.ffm(outs[0], arms_out[1])
# The `outputs` has four feature maps.
# `outs[0]` is outputted for `STDCHead` auxiliary head.
# Two feature maps of `arms_out` are outputted for auxiliary head.
# `feat_fuse` is outputted for decoder head.
outputs = [outs[0]] + list(arms_out) + [feat_fuse]
return tuple(outputs)
|