Spaces:
Runtime error
Runtime error
File size: 12,993 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import build_activation_layer, build_conv_layer, build_norm_layer
from mmengine.model import BaseModule
from mmseg.registry import MODELS
from ..utils import resize
class DownsamplerBlock(BaseModule):
"""Downsampler block of ERFNet.
This module is a little different from basical ConvModule.
The features from Conv and MaxPool layers are
concatenated before BatchNorm.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
conv_cfg (dict | None): Config of conv layers.
Default: None.
norm_cfg (dict | None): Config of norm layers.
Default: dict(type='BN').
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU').
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN', eps=1e-3),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.conv = build_conv_layer(
self.conv_cfg,
in_channels,
out_channels - in_channels,
kernel_size=3,
stride=2,
padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.bn = build_norm_layer(self.norm_cfg, out_channels)[1]
self.act = build_activation_layer(self.act_cfg)
def forward(self, input):
conv_out = self.conv(input)
pool_out = self.pool(input)
pool_out = resize(
input=pool_out,
size=conv_out.size()[2:],
mode='bilinear',
align_corners=False)
output = torch.cat([conv_out, pool_out], 1)
output = self.bn(output)
output = self.act(output)
return output
class NonBottleneck1d(BaseModule):
"""Non-bottleneck block of ERFNet.
Args:
channels (int): Number of channels in Non-bottleneck block.
drop_rate (float): Probability of an element to be zeroed.
Default 0.
dilation (int): Dilation rate for last two conv layers.
Default 1.
num_conv_layer (int): Number of 3x1 and 1x3 convolution layers.
Default 2.
conv_cfg (dict | None): Config of conv layers.
Default: None.
norm_cfg (dict | None): Config of norm layers.
Default: dict(type='BN').
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU').
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
channels,
drop_rate=0,
dilation=1,
num_conv_layer=2,
conv_cfg=None,
norm_cfg=dict(type='BN', eps=1e-3),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.act = build_activation_layer(self.act_cfg)
self.convs_layers = nn.ModuleList()
for conv_layer in range(num_conv_layer):
first_conv_padding = (1, 0) if conv_layer == 0 else (dilation, 0)
first_conv_dilation = 1 if conv_layer == 0 else (dilation, 1)
second_conv_padding = (0, 1) if conv_layer == 0 else (0, dilation)
second_conv_dilation = 1 if conv_layer == 0 else (1, dilation)
self.convs_layers.append(
build_conv_layer(
self.conv_cfg,
channels,
channels,
kernel_size=(3, 1),
stride=1,
padding=first_conv_padding,
bias=True,
dilation=first_conv_dilation))
self.convs_layers.append(self.act)
self.convs_layers.append(
build_conv_layer(
self.conv_cfg,
channels,
channels,
kernel_size=(1, 3),
stride=1,
padding=second_conv_padding,
bias=True,
dilation=second_conv_dilation))
self.convs_layers.append(
build_norm_layer(self.norm_cfg, channels)[1])
if conv_layer == 0:
self.convs_layers.append(self.act)
else:
self.convs_layers.append(nn.Dropout(p=drop_rate))
def forward(self, input):
output = input
for conv in self.convs_layers:
output = conv(output)
output = self.act(output + input)
return output
class UpsamplerBlock(BaseModule):
"""Upsampler block of ERFNet.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
conv_cfg (dict | None): Config of conv layers.
Default: None.
norm_cfg (dict | None): Config of norm layers.
Default: dict(type='BN').
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU').
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN', eps=1e-3),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.conv = nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
bias=True)
self.bn = build_norm_layer(self.norm_cfg, out_channels)[1]
self.act = build_activation_layer(self.act_cfg)
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
output = self.act(output)
return output
@MODELS.register_module()
class ERFNet(BaseModule):
"""ERFNet backbone.
This backbone is the implementation of `ERFNet: Efficient Residual
Factorized ConvNet for Real-time SemanticSegmentation
<https://ieeexplore.ieee.org/document/8063438>`_.
Args:
in_channels (int): The number of channels of input
image. Default: 3.
enc_downsample_channels (Tuple[int]): Size of channel
numbers of various Downsampler block in encoder.
Default: (16, 64, 128).
enc_stage_non_bottlenecks (Tuple[int]): Number of stages of
Non-bottleneck block in encoder.
Default: (5, 8).
enc_non_bottleneck_dilations (Tuple[int]): Dilation rate of each
stage of Non-bottleneck block of encoder.
Default: (2, 4, 8, 16).
enc_non_bottleneck_channels (Tuple[int]): Size of channel
numbers of various Non-bottleneck block in encoder.
Default: (64, 128).
dec_upsample_channels (Tuple[int]): Size of channel numbers of
various Deconvolution block in decoder.
Default: (64, 16).
dec_stages_non_bottleneck (Tuple[int]): Number of stages of
Non-bottleneck block in decoder.
Default: (2, 2).
dec_non_bottleneck_channels (Tuple[int]): Size of channel
numbers of various Non-bottleneck block in decoder.
Default: (64, 16).
drop_rate (float): Probability of an element to be zeroed.
Default 0.1.
"""
def __init__(self,
in_channels=3,
enc_downsample_channels=(16, 64, 128),
enc_stage_non_bottlenecks=(5, 8),
enc_non_bottleneck_dilations=(2, 4, 8, 16),
enc_non_bottleneck_channels=(64, 128),
dec_upsample_channels=(64, 16),
dec_stages_non_bottleneck=(2, 2),
dec_non_bottleneck_channels=(64, 16),
dropout_ratio=0.1,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
assert len(enc_downsample_channels) \
== len(dec_upsample_channels)+1, 'Number of downsample\
block of encoder does not \
match number of upsample block of decoder!'
assert len(enc_downsample_channels) \
== len(enc_stage_non_bottlenecks)+1, 'Number of \
downsample block of encoder does not match \
number of Non-bottleneck block of encoder!'
assert len(enc_downsample_channels) \
== len(enc_non_bottleneck_channels)+1, 'Number of \
downsample block of encoder does not match \
number of channels of Non-bottleneck block of encoder!'
assert enc_stage_non_bottlenecks[-1] \
% len(enc_non_bottleneck_dilations) == 0, 'Number of \
Non-bottleneck block of encoder does not match \
number of Non-bottleneck block of encoder!'
assert len(dec_upsample_channels) \
== len(dec_stages_non_bottleneck), 'Number of \
upsample block of decoder does not match \
number of Non-bottleneck block of decoder!'
assert len(dec_stages_non_bottleneck) \
== len(dec_non_bottleneck_channels), 'Number of \
Non-bottleneck block of decoder does not match \
number of channels of Non-bottleneck block of decoder!'
self.in_channels = in_channels
self.enc_downsample_channels = enc_downsample_channels
self.enc_stage_non_bottlenecks = enc_stage_non_bottlenecks
self.enc_non_bottleneck_dilations = enc_non_bottleneck_dilations
self.enc_non_bottleneck_channels = enc_non_bottleneck_channels
self.dec_upsample_channels = dec_upsample_channels
self.dec_stages_non_bottleneck = dec_stages_non_bottleneck
self.dec_non_bottleneck_channels = dec_non_bottleneck_channels
self.dropout_ratio = dropout_ratio
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.encoder.append(
DownsamplerBlock(self.in_channels, enc_downsample_channels[0]))
for i in range(len(enc_downsample_channels) - 1):
self.encoder.append(
DownsamplerBlock(enc_downsample_channels[i],
enc_downsample_channels[i + 1]))
# Last part of encoder is some dilated NonBottleneck1d blocks.
if i == len(enc_downsample_channels) - 2:
iteration_times = int(enc_stage_non_bottlenecks[-1] /
len(enc_non_bottleneck_dilations))
for j in range(iteration_times):
for k in range(len(enc_non_bottleneck_dilations)):
self.encoder.append(
NonBottleneck1d(enc_downsample_channels[-1],
self.dropout_ratio,
enc_non_bottleneck_dilations[k]))
else:
for j in range(enc_stage_non_bottlenecks[i]):
self.encoder.append(
NonBottleneck1d(enc_downsample_channels[i + 1],
self.dropout_ratio))
for i in range(len(dec_upsample_channels)):
if i == 0:
self.decoder.append(
UpsamplerBlock(enc_downsample_channels[-1],
dec_non_bottleneck_channels[i]))
else:
self.decoder.append(
UpsamplerBlock(dec_non_bottleneck_channels[i - 1],
dec_non_bottleneck_channels[i]))
for j in range(dec_stages_non_bottleneck[i]):
self.decoder.append(
NonBottleneck1d(dec_non_bottleneck_channels[i]))
def forward(self, x):
for enc in self.encoder:
x = enc(x)
for dec in self.decoder:
x = dec(x)
return [x]
|