Spaces:
Runtime error
Runtime error
File size: 10,167 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Copyright (c) OpenMMLab. All rights reserved.
import random
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from mmpretrain.models.backbones import MixMIMTransformer
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from ..utils import build_2d_sincos_position_embedding
from .base import BaseSelfSupervisor
@MODELS.register_module()
class MixMIMPretrainTransformer(MixMIMTransformer):
"""MixMIM backbone for MixMIM pre-training.
A PyTorch implement of : ` MixMIM: Mixed and Masked Image
Modeling for Efficient Visual Representation Learning
<https://arxiv.org/abs/2205.13137>`_
Args:
arch (str | dict): MixMIM architecture. If use string,
choose from 'base','large' and 'huge'.
If use dict, it should have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **depths** (int): The number of transformer encoder layers.
- **num_heads** (int): The number of heads in attention modules.
Defaults to 'base'.
mlp_ratio (int): The mlp ratio in FFN. Defaults to 4.
img_size (int | tuple): The expected input image shape. Because we
support dynamic input shape, just set the argument to mlp_ratio
the most common input image shape. Defaults to 224.
patch_size (int | tuple): The patch size in patch embedding.
Defaults to 16.
in_channels (int): The num of input channels. Defaults to 3.
window_size (list): The height and width of the window.
qkv_bias (bool): Whether to add bias for qkv in attention modules.
Defaults to True.
patch_cfg (dict): Extra config dict for patch embedding.
Defaults to an empty dict.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
attn_drop_rate (float): Attention drop rate. Defaults to 0.
use_checkpoint (bool): Whether use the checkpoint to reduce GPU memory
cost. Defaults to False.
mask_ratio (bool): The base ratio of total number of patches to be
masked. Defaults to 0.5.
range_mask_ratio (float): The range of mask ratio.
Defaults to 0.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
arch: Union[str, dict] = 'base',
mlp_ratio: float = 4,
img_size: int = 224,
patch_size: int = 4,
in_channels: int = 3,
window_size: List = [14, 14, 14, 7],
qkv_bias: bool = True,
patch_cfg: dict = dict(),
norm_cfg: dict = dict(type='LN'),
drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
attn_drop_rate: float = 0.0,
use_checkpoint: bool = False,
mask_ratio: float = 0.5,
range_mask_ratio: float = 0.0,
init_cfg: Optional[dict] = None) -> None:
super().__init__(
arch=arch,
mlp_ratio=mlp_ratio,
img_size=img_size,
patch_size=patch_size,
in_channels=in_channels,
window_size=window_size,
qkv_bias=qkv_bias,
patch_cfg=patch_cfg,
norm_cfg=norm_cfg,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
attn_drop_rate=attn_drop_rate,
use_checkpoint=use_checkpoint,
init_cfg=init_cfg)
self.mask_ratio = mask_ratio
self.range_mask_ratio = range_mask_ratio
def init_weights(self):
"""Initialize position embedding, patch embedding."""
super(MixMIMTransformer, self).init_weights()
pos_embed = build_2d_sincos_position_embedding(
int(self.num_patches**.5),
self.absolute_pos_embed.shape[-1],
cls_token=False)
self.absolute_pos_embed.data.copy_(pos_embed.float())
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def random_masking(self,
x: torch.Tensor,
mask_ratio: float = 0.5) -> Tuple[torch.Tensor]:
"""Generate the mask for MixMIM Pretraining.
Args:
x (torch.Tensor): Image with data augmentation applied, which is
of shape B x L x C.
mask_ratio (float): The mask ratio of total patches.
Defaults to 0.5.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
- mask_s1 (torch.Tensor): mask with stride of
self.encoder_stride // 8.
- mask_s2 (torch.Tensor): mask with stride of
self.encoder_stride // 4.
- mask_s3 (torch.Tensor): mask with stride of
self.encoder_stride // 2.
- mask (torch.Tensor): mask with stride of
self.encoder_stride.
"""
B, C, H, W = x.shape
out_H = H // self.encoder_stride
out_W = W // self.encoder_stride
s3_H, s3_W = out_H * 2, out_W * 2
s2_H, s2_W = out_H * 4, out_W * 4
s1_H, s1_W = out_H * 8, out_W * 8
seq_l = out_H * out_W
# use a shared mask for a batch images
mask = torch.zeros([1, 1, seq_l], device=x.device)
mask_ratio = mask_ratio + random.uniform(0.0, self.range_mask_ratio)
noise = torch.rand(1, 1, seq_l, device=x.device) # noise in [0, 1]
# ascend: small is keep, large is removed
mask_idx = torch.argsort(noise, dim=2)[:, :, :int(seq_l * mask_ratio)]
mask.scatter_(2, mask_idx, 1)
mask = mask.reshape(1, 1, out_H, out_W)
mask_s1 = F.interpolate(mask, size=(s1_H, s1_W), mode='nearest')
mask_s2 = F.interpolate(mask, size=(s2_H, s2_W), mode='nearest')
mask_s3 = F.interpolate(mask, size=(s3_H, s3_W), mode='nearest')
mask = mask.reshape(1, out_H * out_W, 1).contiguous()
mask_s1 = mask_s1.reshape(1, s1_H * s1_W, 1).contiguous()
mask_s2 = mask_s2.reshape(1, s2_H * s2_W, 1).contiguous()
mask_s3 = mask_s3.reshape(1, s3_H * s3_W, 1).contiguous()
return mask_s1, mask_s2, mask_s3, mask
def forward(self,
x: torch.Tensor,
mask: Optional[bool] = True) -> Tuple[torch.Tensor]:
"""Generate features for masked images.
This function generates mask and masks some patches randomly and get
the hidden features for visible patches.
Args:
x (torch.Tensor): Input images, which is of shape B x C x H x W.
mask (bool, optional): To indicate whether the forward containing
``mask`` or not.
Returns:
Tuple[torch.Tensor, torch.Tensor]:
- x (torch.Tensor): hidden features, which is of shape
B x L x C.
- mask_s4 (torch.Tensor): the mask tensor for the last layer.
"""
if mask is None or False:
return super().forward(x)
else:
mask_s1, mask_s2, mask_s3, mask_s4 = self.random_masking(
x, self.mask_ratio)
x, _ = self.patch_embed(x)
x = x * (1. - mask_s1) + x.flip(0) * mask_s1
x = x + self.absolute_pos_embed
x = self.drop_after_pos(x)
for idx, layer in enumerate(self.layers):
if idx == 0:
x = layer(x, attn_mask=mask_s1)
elif idx == 1:
x = layer(x, attn_mask=mask_s2)
elif idx == 2:
x = layer(x, attn_mask=mask_s3)
elif idx == 3:
x = layer(x, attn_mask=mask_s4)
x = self.norm(x)
return x, mask_s4
@MODELS.register_module()
class MixMIM(BaseSelfSupervisor):
"""MixMIM.
Implementation of `MixMIM: Mixed and Masked Image Modeling for Efficient
Visual Representation Learning. <https://arxiv.org/abs/2205.13137>`_.
"""
def __init__(self,
backbone: dict,
neck: Optional[dict] = None,
head: Optional[dict] = None,
pretrained: Optional[str] = None,
data_preprocessor: Optional[Union[dict, nn.Module]] = None,
init_cfg: Optional[dict] = None):
head.update(dict(patch_size=neck['encoder_stride']))
super().__init__(
backbone=backbone,
neck=neck,
head=head,
pretrained=pretrained,
data_preprocessor=data_preprocessor,
init_cfg=init_cfg)
def extract_feat(self, inputs: torch.Tensor):
return self.backbone(inputs, mask=None)
def loss(self, inputs: torch.Tensor, data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (torch.Tensor): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
latent, mask = self.backbone(inputs)
x_rec = self.neck(latent, mask)
loss = self.head.loss(x_rec, inputs, mask)
losses = dict(loss=loss)
return losses
|