Spaces:
Runtime error
Runtime error
File size: 10,771 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks import DropPath
from mmcv.cnn.bricks.transformer import FFN
from mmengine.model import BaseModule
from mmengine.model.weight_init import trunc_normal_
from mmpretrain.models.backbones.beit import BEiTTransformerEncoderLayer
from mmpretrain.registry import MODELS
from ..utils import CrossMultiheadAttention
class CAETransformerRegressorLayer(BaseModule):
"""Transformer layer for the regressor of CAE.
This module is different from conventional transformer encoder layer, for
its queries are the masked tokens, but its keys and values are the
concatenation of the masked and unmasked tokens.
Args:
embed_dims (int): The feature dimension.
num_heads (int): The number of heads in multi-head attention.
feedforward_channels (int): The hidden dimension of FFNs.
Defaults: 1024.
num_fcs (int, optional): The number of fully-connected layers in
FFNs. Default: 2.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
drop_rate (float): The dropout rate. Defaults to 0.0.
attn_drop_rate (float): The drop out rate for attention output weights.
Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
layer_scale_init_value (float): The init value of gamma.
Defaults to 0.0.
act_cfg (dict): The activation config for FFNs.
Defaults to ``dict(type='GELU')``.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
"""
def __init__(
self,
embed_dims: int,
num_heads: int,
feedforward_channels: int,
num_fcs: int = 2,
qkv_bias: bool = False,
qk_scale: float = None,
drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
layer_scale_init_value: float = 0.0,
act_cfg: dict = dict(type='GELU'),
norm_cfg: dict = dict(type='LN', eps=1e-6)
) -> None:
super().__init__()
# NOTE: cross attention
_, self.norm1_q_cross = build_norm_layer(
norm_cfg, embed_dims, postfix=2)
_, self.norm1_k_cross = build_norm_layer(
norm_cfg, embed_dims, postfix=2)
_, self.norm1_v_cross = build_norm_layer(
norm_cfg, embed_dims, postfix=2)
_, self.norm2_cross = build_norm_layer(norm_cfg, embed_dims, postfix=2)
self.cross_attn = CrossMultiheadAttention(
embed_dims,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop_rate,
proj_drop=drop_rate)
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=num_fcs,
ffn_drop=drop_rate,
dropout_layer=None,
act_cfg=act_cfg,
add_identity=False)
self.drop_path = DropPath(drop_prob=drop_path_rate)
if layer_scale_init_value > 0:
self.gamma_1_cross = nn.Parameter(
layer_scale_init_value * torch.ones((embed_dims)),
requires_grad=True)
self.gamma_2_cross = nn.Parameter(
layer_scale_init_value * torch.ones((embed_dims)),
requires_grad=True)
else:
self.gamma_1_cross = nn.Parameter(
torch.ones((embed_dims)), requires_grad=False)
self.gamma_2_cross = nn.Parameter(
torch.ones((embed_dims)), requires_grad=False)
def forward(self, x_q: torch.Tensor, x_kv: torch.Tensor,
pos_q: torch.Tensor, pos_k: torch.Tensor) -> torch.Tensor:
"""Forward function."""
x = x_q + self.drop_path(self.gamma_1_cross * self.cross_attn(
self.norm1_q_cross(x_q + pos_q),
k=self.norm1_k_cross(x_kv + pos_k),
v=self.norm1_v_cross(x_kv)))
x = self.norm2_cross(x)
x = x + self.drop_path(self.gamma_2_cross * self.ffn(x))
return x
@MODELS.register_module()
class CAENeck(BaseModule):
"""Neck for CAE Pre-training.
This module construct the latent prediction regressor and the decoder
for the latent prediction and final prediction.
Args:
num_classes (int): The number of classes for final prediction. Defaults
to 8192.
embed_dims (int): The embed dims of latent feature in regressor and
decoder. Defaults to 768.
regressor_depth (int): The number of regressor blocks. Defaults to 6.
decoder_depth (int): The number of decoder blocks. Defaults to 8.
num_heads (int): The number of head in multi-head attention. Defaults
to 12.
mlp_ratio (int): The expand ratio of latent features in MLP. defaults
to 4.
qkv_bias (bool): Whether or not to use qkv bias. Defaults to True.
qk_scale (float, optional): The scale applied to the results of qk.
Defaults to None.
drop_rate (float): The dropout rate. Defaults to 0.
attn_drop_rate (float): The dropout rate in attention block. Defaults
to 0.
norm_cfg (dict): The config of normalization layer. Defaults to
dict(type='LN', eps=1e-6).
layer_scale_init_value (float, optional): The init value of gamma.
Defaults to None.
mask_tokens_num (int): The number of mask tokens. Defaults to 75.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
num_classes: int = 8192,
embed_dims: int = 768,
regressor_depth: int = 6,
decoder_depth: int = 8,
num_heads: int = 12,
mlp_ratio: int = 4,
qkv_bias: bool = True,
qk_scale: float = None,
drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
norm_cfg: dict = dict(type='LN', eps=1e-6),
layer_scale_init_value: float = None,
mask_tokens_num: int = 75,
init_cfg: dict = None) -> None:
super().__init__(init_cfg=init_cfg)
self.num_features = self.embed_dim = embed_dims
self.mask_token_num = mask_tokens_num
# regressor
regressor_drop_path_rates = [
x.item()
for x in torch.linspace(0, drop_path_rate, regressor_depth)
]
self.regressors = nn.ModuleList([
CAETransformerRegressorLayer(
embed_dims=embed_dims,
num_heads=num_heads,
feedforward_channels=mlp_ratio * embed_dims,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=regressor_drop_path_rates[i],
norm_cfg=norm_cfg,
layer_scale_init_value=layer_scale_init_value)
for i in range(regressor_depth)
])
# decoder
decoder_drop_path_rates = [
x.item() for x in torch.linspace(0, drop_path_rate, decoder_depth)
]
self.decoders = nn.ModuleList([
BEiTTransformerEncoderLayer(
embed_dims=embed_dims,
num_heads=num_heads,
feedforward_channels=mlp_ratio * embed_dims,
layer_scale_init_value=layer_scale_init_value,
window_size=None,
# setting `use_rel_pos_bias` to False ignores the `window_size`
use_rel_pos_bias=False,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=decoder_drop_path_rates[i],
norm_cfg=norm_cfg) for i in range(decoder_depth)
])
_, self.norm_regressor = build_norm_layer(
norm_cfg, embed_dims, postfix=2)
_, self.norm_decoder = build_norm_layer(
norm_cfg, embed_dims, postfix=2)
self.head = nn.Linear(
embed_dims, num_classes) if num_classes > 0 else nn.Identity()
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
def init_weights(self) -> None:
"""Initialization."""
super().init_weights()
self.apply(self._init_weights)
trunc_normal_(self.mask_token, std=0.02)
trunc_normal_(self.head.weight, std=0.02)
def _init_weights(self, m: nn.Module) -> None:
"""Initialization."""
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(
self, x_unmasked: torch.Tensor, pos_embed_masked: torch.Tensor,
pos_embed_unmasked: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get the latent prediction and final prediction.
Args:
x_unmasked (torch.Tensor): Features of unmasked tokens.
pos_embed_masked (torch.Tensor): Position embedding of masked
tokens.
pos_embed_unmasked (torch.Tensor): Position embedding of unmasked
tokens.
Returns:
Tuple[torch.Tensor, torch.Tensor]:
- ``logits``: Final prediction.
- ``latent_pred``: Latent prediction.
"""
x_masked = self.mask_token.expand(x_unmasked.shape[0],
self.mask_token_num, -1)
# regressor
for regressor in self.regressors:
x_masked = regressor(
x_masked, torch.cat([x_unmasked, x_masked], dim=1),
pos_embed_masked,
torch.cat([pos_embed_unmasked, pos_embed_masked], dim=1))
x_masked = self.norm_regressor(x_masked)
latent_pred = x_masked
# decoder
x_masked = x_masked + pos_embed_masked
for decoder in self.decoders:
x_masked = decoder(x_masked, rel_pos_bias=None)
x_masked = self.norm_decoder(x_masked)
logits = self.head(x_masked)
return logits, latent_pred
|