Spaces:
Runtime error
Runtime error
File size: 13,810 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# Copyright (c) OpenMMLab. All rights reserved.
"""Taken from https://github.com/lucidrains/flamingo-pytorch."""
from typing import Optional
import torch
from einops import rearrange, repeat
from torch import einsum, nn
def FeedForward(dim, mult: int = 4):
"""Feedforward layers.
Args:
mult (int): Layer expansion muliplier. Defaults to 4.
"""
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
class PerceiverAttention(nn.Module):
"""Perceiver attetion layers.
Args:
dim (int): Input dimensions.
dim_head (int): Number of dimension heads. Defaults to 64.
heads (int): Number of heads. Defaults to 8.
"""
def __init__(self, *, dim: int, dim_head: int = 64, heads: int = 8):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm_media = nn.LayerNorm(dim)
self.norm_latents = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x: torch.Tensor, latents: torch.Tensor):
"""Forward function.
Args:
x (torch.Tensor): image features of shape (b, T, n1, D).
latent (torch.Tensor): latent features of shape (b, T, n2, D).
"""
x = self.norm_media(x)
latents = self.norm_latents(latents)
h = self.heads
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = rearrange(q, 'b t n (h d) -> b h t n d', h=h)
k = rearrange(k, 'b t n (h d) -> b h t n d', h=h)
v = rearrange(v, 'b t n (h d) -> b h t n d', h=h)
q = q * self.scale
# attention
sim = einsum('... i d, ... j d -> ... i j', q, k)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
out = einsum('... i j, ... j d -> ... i d', attn, v)
out = rearrange(out, 'b h t n d -> b t n (h d)', h=h)
return self.to_out(out)
class PerceiverResampler(nn.Module):
"""Perceiver resampler layers.
Args:
dim (int): Input dimensions.
depth (int): Depth of resampler. Defaults to 6.
dim_head (int): Number of dimension heads. Defaults to 64.
heads (int): Number of heads. Defaults to 8.
num_latents (int): Number of latents. Defaults to 64.
max_num_media (int, optional): Max number of media.
Defaults to None.
max_num_frames (int, optional): Max number of frames.
Defaults to None.
ff_mult (int): Feed forward multiplier. Defaults to 4.
"""
def __init__(
self,
*,
dim: int,
depth: int = 6,
dim_head: int = 64,
heads: int = 8,
num_latents: int = 64,
max_num_media: Optional[int] = None,
max_num_frames: Optional[int] = None,
ff_mult: int = 4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(num_latents, dim))
self.frame_embs = (
nn.Parameter(torch.randn(max_num_frames, dim))
if max_num_frames is not None else None)
self.media_time_embs = (
nn.Parameter(torch.randn(max_num_media, 1, dim))
if max_num_media is not None else None)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(
dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
self.norm = nn.LayerNorm(dim)
def forward(self, x: torch.Tensor):
"""Forward function for perceiver sampler.
Args:
x (torch.Tensor): image features of shape (b, T, F, v, D)
Returns:
torch.Tensor: shape (b, T, n, D) where n is self.num_latents
"""
b, T, F, v = x.shape[:4]
# frame and media time embeddings
if self.frame_embs is not None:
frame_embs = repeat(
self.frame_embs[:F], 'F d -> b T F v d', b=b, T=T, v=v)
x = x + frame_embs
x = rearrange(x, 'b T F v d -> b T (F v) d'
) # flatten the frame and spatial dimensions
if self.media_time_embs is not None:
x = x + self.media_time_embs[:T]
# blocks
latents = repeat(self.latents, 'n d -> b T n d', b=b, T=T)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
return self.norm(latents)
class MaskedCrossAttention(nn.Module):
"""Masked cross attention layers.
Args:
dim (int): Input text feature dimensions.
dim_visual (int): Input visual feature dimensions.
dim_head (int): Number of dimension heads. Defaults to 64.
heads (int): Number of heads. Defaults to 8.
only_attend_immediate_media (bool): Whether attend immediate media.
Defaults to True.
"""
def __init__(
self,
*,
dim: int,
dim_visual: int,
dim_head: int = 64,
heads: int = 8,
only_attend_immediate_media: bool = True,
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim_visual, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
# whether for text to only attend to immediate preceding image
# or all previous images
self.only_attend_immediate_media = only_attend_immediate_media
def forward(self,
x: torch.Tensor,
media: torch.Tensor,
media_locations: Optional[torch.Tensor] = None,
attend_previous: bool = True):
"""Forward function for perceiver sampler.
Args:
x (torch.Tensor): text features of shape (B, T_txt, D_txt).
media (torch.Tensor): image features of shape
(B, T_img, n, D_img) where n is the dim of the latents.
media_locations (torch.Tensor, optional): boolean mask identifying
the media tokens in x of shape (B, T_txt). Defaults to None.
attend_previous (bool): If false, ignores immediately preceding
image and starts attending when following image.
Defaults to True.
"""
_, T_img, n = media.shape[:3]
h = self.heads
x = self.norm(x)
q = self.to_q(x)
media = rearrange(media, 'b t n d -> b (t n) d')
k, v = self.to_kv(media).chunk(2, dim=-1)
q = rearrange(q, 'b n (h d) -> b h n d', h=h)
k = rearrange(k, 'b n (h d) -> b h n d', h=h)
v = rearrange(v, 'b n (h d) -> b h n d', h=h)
q = q * self.scale
sim = einsum('... i d, ... j d -> ... i j', q, k)
if media_locations is not None:
# at each boolean of True, increment the time counter
# (relative to media time)
text_time = media_locations.cumsum(dim=-1)
media_time = torch.arange(T_img, device=x.device) + 1
if not attend_previous:
text_time[~media_locations] += 1
# make sure max is still the number of images in the sequence
text_time[text_time > repeat(
torch.count_nonzero(media_locations, dim=1),
'b -> b i',
i=text_time.shape[1],
)] = 0
# text time must equal media time if only attending to most
# immediate image otherwise, as long as text time is greater than
# media time (if attending to all previous images / media)
mask_op = torch.eq if self.only_attend_immediate_media else torch.ge # noqa
text_to_media_mask = mask_op(
rearrange(text_time, 'b i -> b 1 i 1'),
repeat(media_time, 'j -> 1 1 1 (j n)', n=n),
)
sim = sim.masked_fill(~text_to_media_mask,
-torch.finfo(sim.dtype).max)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
if media_locations is not None and self.only_attend_immediate_media:
# any text without a preceding media needs to have
# attention zeroed out
text_without_media_mask = text_time == 0
text_without_media_mask = rearrange(text_without_media_mask,
'b i -> b 1 i 1')
attn = attn.masked_fill(text_without_media_mask, 0.0)
out = einsum('... i j, ... j d -> ... i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class GatedCrossAttentionBlock(nn.Module):
"""Gated cross attention layers.
Args:
dim (int): Input text feature dimensions.
dim_visual (int): Input visual feature dimensions.
dim_head (int): Number of dimension heads. Defaults to 64.
heads (int): Number of heads. Defaults to 8.
ff_mult (int): Feed forward multiplier. Defaults to 4.
only_attend_immediate_media (bool): Whether attend immediate media.
Defaults to True.
"""
def __init__(
self,
*,
dim: int,
dim_visual: int,
dim_head: int = 64,
heads: int = 8,
ff_mult: int = 4,
only_attend_immediate_media: bool = True,
):
super().__init__()
self.attn = MaskedCrossAttention(
dim=dim,
dim_visual=dim_visual,
dim_head=dim_head,
heads=heads,
only_attend_immediate_media=only_attend_immediate_media,
)
self.attn_gate = nn.Parameter(torch.tensor([0.0]))
self.ff = FeedForward(dim, mult=ff_mult)
self.ff_gate = nn.Parameter(torch.tensor([0.0]))
def forward(self,
x: torch.Tensor,
media: torch.Tensor,
media_locations: Optional[torch.Tensor] = None,
attend_previous: bool = True):
"""Forward function for perceiver sampler.
Args:
x (torch.Tensor): text features of shape (B, T_txt, D_txt).
media (torch.Tensor): image features of shape
(B, T_img, n, D_img) where n is the dim of the latents.
media_locations (torch.Tensor, optional): boolean mask identifying
the media tokens in x of shape (B, T_txt). Defaults to None.
attend_previous (bool): If false, ignores immediately preceding
image and starts attending when following image.
Defaults to True.
"""
x = (
self.attn(
x,
media,
media_locations=media_locations,
attend_previous=attend_previous,
) * self.attn_gate.tanh() + x)
x = self.ff(x) * self.ff_gate.tanh() + x
return x
class FlamingoLayer(nn.Module):
"""Faminogo layers.
Args:
gated_cross_attn_layer (nn.Module): Gated cross attention layer.
decoder_layer (nn.Module): Decoder layer.
"""
def __init__(self, gated_cross_attn_layer: nn.Module,
decoder_layer: nn.Module):
super().__init__()
self.gated_cross_attn_layer = gated_cross_attn_layer
self.decoder_layer = decoder_layer
self.vis_x = None
self.media_locations = None
def is_conditioned(self) -> bool:
"""Check whether the layer is conditioned."""
return self.vis_x is not None
def condition_vis_x(self, vis_x):
"""Set condition vision features."""
self.vis_x = vis_x
def condition_media_locations(self, media_locations):
"""Set condition media locations."""
self.media_locations = media_locations
def condition_attend_previous(self, attend_previous):
"""Set attend previous."""
self.attend_previous = attend_previous
def forward(
self,
lang_x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**decoder_layer_kwargs,
):
"""Forward function.
Args:
lang_x (torch.Tensor): language inputs.
attention_mask (torch.Tensor, optional): text attention mask.
Defaults to None.
**decoder_layer_kwargs: Other decoder layer keyword arguments.
"""
if self.gated_cross_attn_layer is None:
return self.decoder_layer(
lang_x, attention_mask=attention_mask, **decoder_layer_kwargs)
if self.vis_x is None:
raise ValueError('vis_x must be conditioned before forward pass')
if self.media_locations is None:
raise ValueError(
'media_locations must be conditioned before forward pass')
lang_x = self.gated_cross_attn_layer(
lang_x,
self.vis_x,
media_locations=self.media_locations,
attend_previous=self.attend_previous,
)
lang_x = self.decoder_layer(
lang_x, attention_mask=attention_mask, **decoder_layer_kwargs)
return lang_x
|