File size: 13,810 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright (c) OpenMMLab. All rights reserved.
"""Taken from https://github.com/lucidrains/flamingo-pytorch."""

from typing import Optional

import torch
from einops import rearrange, repeat
from torch import einsum, nn


def FeedForward(dim, mult: int = 4):
    """Feedforward layers.

    Args:
        mult (int): Layer expansion muliplier. Defaults to 4.
    """
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


class PerceiverAttention(nn.Module):
    """Perceiver attetion layers.

    Args:
        dim (int): Input dimensions.
        dim_head (int): Number of dimension heads. Defaults to 64.
        heads (int): Number of heads. Defaults to 8.
    """

    def __init__(self, *, dim: int, dim_head: int = 64, heads: int = 8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm_media = nn.LayerNorm(dim)
        self.norm_latents = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x: torch.Tensor, latents: torch.Tensor):
        """Forward function.

        Args:
            x (torch.Tensor): image features of shape (b, T, n1, D).
            latent (torch.Tensor): latent features of shape (b, T, n2, D).
        """
        x = self.norm_media(x)
        latents = self.norm_latents(latents)

        h = self.heads

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)
        q = rearrange(q, 'b t n (h d) -> b h t n d', h=h)
        k = rearrange(k, 'b t n (h d) -> b h t n d', h=h)
        v = rearrange(v, 'b t n (h d) -> b h t n d', h=h)
        q = q * self.scale

        # attention
        sim = einsum('... i d, ... j d  -> ... i j', q, k)
        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        out = einsum('... i j, ... j d -> ... i d', attn, v)
        out = rearrange(out, 'b h t n d -> b t n (h d)', h=h)
        return self.to_out(out)


class PerceiverResampler(nn.Module):
    """Perceiver resampler layers.

    Args:
        dim (int): Input dimensions.
        depth (int): Depth of resampler. Defaults to 6.
        dim_head (int): Number of dimension heads. Defaults to 64.
        heads (int): Number of heads. Defaults to 8.
        num_latents (int): Number of latents. Defaults to 64.
        max_num_media (int, optional): Max number of media.
            Defaults to None.
        max_num_frames (int, optional): Max number of frames.
            Defaults to None.
        ff_mult (int): Feed forward multiplier. Defaults to 4.
    """

    def __init__(
        self,
        *,
        dim: int,
        depth: int = 6,
        dim_head: int = 64,
        heads: int = 8,
        num_latents: int = 64,
        max_num_media: Optional[int] = None,
        max_num_frames: Optional[int] = None,
        ff_mult: int = 4,
    ):
        super().__init__()
        self.latents = nn.Parameter(torch.randn(num_latents, dim))
        self.frame_embs = (
            nn.Parameter(torch.randn(max_num_frames, dim))
            if max_num_frames is not None else None)
        self.media_time_embs = (
            nn.Parameter(torch.randn(max_num_media, 1, dim))
            if max_num_media is not None else None)

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList([
                    PerceiverAttention(
                        dim=dim, dim_head=dim_head, heads=heads),
                    FeedForward(dim=dim, mult=ff_mult),
                ]))

        self.norm = nn.LayerNorm(dim)

    def forward(self, x: torch.Tensor):
        """Forward function for perceiver sampler.

        Args:
            x (torch.Tensor): image features of shape (b, T, F, v, D)

        Returns:
            torch.Tensor: shape (b, T, n, D) where n is self.num_latents
        """
        b, T, F, v = x.shape[:4]

        # frame and media time embeddings
        if self.frame_embs is not None:
            frame_embs = repeat(
                self.frame_embs[:F], 'F d -> b T F v d', b=b, T=T, v=v)
            x = x + frame_embs
        x = rearrange(x, 'b T F v d -> b T (F v) d'
                      )  # flatten the frame and spatial dimensions
        if self.media_time_embs is not None:
            x = x + self.media_time_embs[:T]

        # blocks
        latents = repeat(self.latents, 'n d -> b T n d', b=b, T=T)
        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents
        return self.norm(latents)


class MaskedCrossAttention(nn.Module):
    """Masked cross attention layers.

    Args:
        dim (int): Input text feature dimensions.
        dim_visual (int): Input visual feature dimensions.
        dim_head (int): Number of dimension heads. Defaults to 64.
        heads (int): Number of heads. Defaults to 8.
        only_attend_immediate_media (bool): Whether attend immediate media.
            Defaults to True.
    """

    def __init__(
        self,
        *,
        dim: int,
        dim_visual: int,
        dim_head: int = 64,
        heads: int = 8,
        only_attend_immediate_media: bool = True,
    ):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim_visual, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

        # whether for text to only attend to immediate preceding image
        # or all previous images
        self.only_attend_immediate_media = only_attend_immediate_media

    def forward(self,
                x: torch.Tensor,
                media: torch.Tensor,
                media_locations: Optional[torch.Tensor] = None,
                attend_previous: bool = True):
        """Forward function for perceiver sampler.

        Args:
            x (torch.Tensor): text features of shape (B, T_txt, D_txt).
            media (torch.Tensor): image features of shape
                (B, T_img, n, D_img) where n is the dim of the latents.
            media_locations (torch.Tensor, optional): boolean mask identifying
                the media tokens in x of shape (B, T_txt). Defaults to None.
            attend_previous (bool): If false, ignores immediately preceding
                image and starts attending when following image.
                Defaults to True.
        """
        _, T_img, n = media.shape[:3]
        h = self.heads

        x = self.norm(x)

        q = self.to_q(x)
        media = rearrange(media, 'b t n d -> b (t n) d')

        k, v = self.to_kv(media).chunk(2, dim=-1)
        q = rearrange(q, 'b n (h d) -> b h n d', h=h)
        k = rearrange(k, 'b n (h d) -> b h n d', h=h)
        v = rearrange(v, 'b n (h d) -> b h n d', h=h)

        q = q * self.scale

        sim = einsum('... i d, ... j d -> ... i j', q, k)

        if media_locations is not None:
            # at each boolean of True, increment the time counter
            # (relative to media time)
            text_time = media_locations.cumsum(dim=-1)
            media_time = torch.arange(T_img, device=x.device) + 1

            if not attend_previous:
                text_time[~media_locations] += 1
                # make sure max is still the number of images in the sequence
                text_time[text_time > repeat(
                    torch.count_nonzero(media_locations, dim=1),
                    'b -> b i',
                    i=text_time.shape[1],
                )] = 0

            # text time must equal media time if only attending to most
            # immediate image otherwise, as long as text time is greater than
            # media time (if attending to all previous images / media)
            mask_op = torch.eq if self.only_attend_immediate_media else torch.ge  # noqa

            text_to_media_mask = mask_op(
                rearrange(text_time, 'b i -> b 1 i 1'),
                repeat(media_time, 'j -> 1 1 1 (j n)', n=n),
            )
            sim = sim.masked_fill(~text_to_media_mask,
                                  -torch.finfo(sim.dtype).max)

        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        if media_locations is not None and self.only_attend_immediate_media:
            # any text without a preceding media needs to have
            # attention zeroed out
            text_without_media_mask = text_time == 0
            text_without_media_mask = rearrange(text_without_media_mask,
                                                'b i -> b 1 i 1')
            attn = attn.masked_fill(text_without_media_mask, 0.0)

        out = einsum('... i j, ... j d -> ... i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)


class GatedCrossAttentionBlock(nn.Module):
    """Gated cross attention layers.

    Args:
        dim (int): Input text feature dimensions.
        dim_visual (int): Input visual feature dimensions.
        dim_head (int): Number of dimension heads. Defaults to 64.
        heads (int): Number of heads. Defaults to 8.
        ff_mult (int): Feed forward multiplier. Defaults to 4.
        only_attend_immediate_media (bool): Whether attend immediate media.
            Defaults to True.
    """

    def __init__(
        self,
        *,
        dim: int,
        dim_visual: int,
        dim_head: int = 64,
        heads: int = 8,
        ff_mult: int = 4,
        only_attend_immediate_media: bool = True,
    ):
        super().__init__()
        self.attn = MaskedCrossAttention(
            dim=dim,
            dim_visual=dim_visual,
            dim_head=dim_head,
            heads=heads,
            only_attend_immediate_media=only_attend_immediate_media,
        )
        self.attn_gate = nn.Parameter(torch.tensor([0.0]))

        self.ff = FeedForward(dim, mult=ff_mult)
        self.ff_gate = nn.Parameter(torch.tensor([0.0]))

    def forward(self,
                x: torch.Tensor,
                media: torch.Tensor,
                media_locations: Optional[torch.Tensor] = None,
                attend_previous: bool = True):
        """Forward function for perceiver sampler.

        Args:
            x (torch.Tensor): text features of shape (B, T_txt, D_txt).
            media (torch.Tensor): image features of shape
                (B, T_img, n, D_img) where n is the dim of the latents.
            media_locations (torch.Tensor, optional): boolean mask identifying
                the media tokens in x of shape (B, T_txt). Defaults to None.
            attend_previous (bool): If false, ignores immediately preceding
                image and starts attending when following image.
                Defaults to True.
        """
        x = (
            self.attn(
                x,
                media,
                media_locations=media_locations,
                attend_previous=attend_previous,
            ) * self.attn_gate.tanh() + x)
        x = self.ff(x) * self.ff_gate.tanh() + x

        return x


class FlamingoLayer(nn.Module):
    """Faminogo layers.

    Args:
        gated_cross_attn_layer (nn.Module): Gated cross attention layer.
        decoder_layer (nn.Module): Decoder layer.
    """

    def __init__(self, gated_cross_attn_layer: nn.Module,
                 decoder_layer: nn.Module):
        super().__init__()
        self.gated_cross_attn_layer = gated_cross_attn_layer
        self.decoder_layer = decoder_layer
        self.vis_x = None
        self.media_locations = None

    def is_conditioned(self) -> bool:
        """Check whether the layer is conditioned."""
        return self.vis_x is not None

    def condition_vis_x(self, vis_x):
        """Set condition vision features."""
        self.vis_x = vis_x

    def condition_media_locations(self, media_locations):
        """Set condition media locations."""
        self.media_locations = media_locations

    def condition_attend_previous(self, attend_previous):
        """Set attend previous."""
        self.attend_previous = attend_previous

    def forward(
        self,
        lang_x: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        **decoder_layer_kwargs,
    ):
        """Forward function.

        Args:
            lang_x (torch.Tensor): language inputs.
            attention_mask (torch.Tensor, optional): text attention mask.
                Defaults to None.
            **decoder_layer_kwargs: Other decoder layer keyword arguments.
        """
        if self.gated_cross_attn_layer is None:
            return self.decoder_layer(
                lang_x, attention_mask=attention_mask, **decoder_layer_kwargs)

        if self.vis_x is None:
            raise ValueError('vis_x must be conditioned before forward pass')

        if self.media_locations is None:
            raise ValueError(
                'media_locations must be conditioned before forward pass')

        lang_x = self.gated_cross_attn_layer(
            lang_x,
            self.vis_x,
            media_locations=self.media_locations,
            attend_previous=self.attend_previous,
        )
        lang_x = self.decoder_layer(
            lang_x, attention_mask=attention_mask, **decoder_layer_kwargs)
        return lang_x