File size: 12,697 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright (c) OpenMMLab. All rights reserved.
import re
from typing import List, Optional

import torch
from mmengine.model import BaseModel

from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
from .modules import PerceiverResampler
from .utils import ExtendModule


@MODELS.register_module()
class Flamingo(BaseModel):
    """The Open Flamingo model for multiple tasks.

    Args:
        vision_encoder (dict): The config of the vision encoder.
        lang_encoder (dict): The config of the language encoder.
        tokenizer (dict): The tokenizer to encode the text.
        task (int): The task to perform prediction.
        zeroshot_prompt (str): Prompt used for zero-shot inference.
            Defaults to '<image>Output:'.
        shot_prompt_tmpl (str): Prompt used for few-shot inference.
            Defaults to ``<image>Output:{caption}<|endofchunk|>``.
        final_prompt_tmpl (str): Final part of prompt used for inference.
            Defaults to '<image>Output:'.
        generation_cfg (dict): The extra generation config, accept the keyword
            arguments of [~`transformers.GenerationConfig`].
            Defaults to an empty dict.
        data_preprocessor (Optional[dict]): The config for preprocessing input
            data. If None or no specified type, it will use
            "MutimodalDataPreprocessor" as type.
            See :class:`MutimodalDataPreprocessor` for more details.
            Defaults to None.
        init_cfg (dict, optional): The initialization config. Defaults to None.
    """

    support_tasks = {'caption', 'vqa'}
    _no_split_modules = [
        'TransformerEncoderLayer', 'PerceiverAttention',
        'GatedCrossAttentionBlock', 'FlamingoLayer'
    ]

    def __init__(
            self,
            vision_encoder: dict,
            lang_encoder: dict,
            tokenizer: dict,
            task: str = 'caption',
            zeroshot_prompt: str = '<image>Output:',
            shot_prompt_tmpl: str = '<image>Output:{caption}<|endofchunk|>',
            final_prompt_tmpl: str = '<image>Output:',
            generation_cfg: dict = dict(),
            data_preprocessor: Optional[dict] = None,
            init_cfg: Optional[dict] = None):
        if data_preprocessor is None:
            data_preprocessor = {}
        if isinstance(data_preprocessor, dict):
            data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
            data_preprocessor = MODELS.build(data_preprocessor)

        super().__init__(
            init_cfg=init_cfg, data_preprocessor=data_preprocessor)

        if task not in self.support_tasks:
            raise ValueError(f'Unsupported task {task}, please select '
                             f'the task from {self.support_tasks}.')
        self.task = task

        # init tokenizer
        self.tokenizer = TOKENIZER.build(tokenizer)
        # add Flamingo special tokens to the tokenizer
        self.tokenizer.add_special_tokens(
            {'additional_special_tokens': ['<|endofchunk|>', '<image>']})
        self.tokenizer.bos_token_id = 1
        if self.tokenizer.pad_token is None:
            # Issue: GPT models don't have a pad token, which we use to
            # modify labels for the loss.
            self.tokenizer.add_special_tokens({'pad_token': '<PAD>'})

        # Template to format the prompt input
        self.zeroshot_prompt = zeroshot_prompt
        self.shot_prompt_tmpl = shot_prompt_tmpl
        self.final_prompt_tmpl = final_prompt_tmpl

        # init vision encoder related modules
        vision_encoder_weight = vision_encoder.pop('pretrained', None)
        self.vision_encoder = MODELS.build(vision_encoder)
        if vision_encoder_weight is not None:
            from mmengine.runner.checkpoint import load_checkpoint
            load_checkpoint(
                self.vision_encoder,
                vision_encoder_weight,
                map_location='cpu',
                revise_keys=[(r'^backbone\.', '')],
            )
            self.vision_encoder.is_init = True

        self.perceiver = PerceiverResampler(dim=self.vision_encoder.embed_dims)

        # init language encoder related modules
        self.lang_encoder = ExtendModule(**lang_encoder)
        self.lang_encoder.resize_token_embeddings(len(self.tokenizer))
        self.lang_encoder.media_token_id = self.tokenizer.encode('<image>')[-1]

        # other necessary parameters
        self.eoc_token_id = self.tokenizer.encode('<|endofchunk|>')[-1]
        self.generation_cfg = {
            'num_beams': 1,
            'max_new_tokens': None,
            'temperature': 1.0,
            'top_k': 0,
            'top_p': 1.0,
            'no_repeat_ngram_size': 0,
            'prefix_allowed_tokens_fn': None,
            'length_penalty': 1.0,
            'num_return_sequences': 1,
            'do_sample': False,
            'early_stopping': False,
            **generation_cfg,
        }

        if hasattr(self, 'register_load_state_dict_post_hook'):
            self.register_load_state_dict_post_hook(self._load_adapter_hook)

    def forward(
        self,
        images: torch.Tensor,
        data_samples: Optional[List[DataSample]] = None,
        mode: str = 'loss',
    ):
        """The unified entry for a forward process in both training and test.
        The method should accept only one mode "loss":

        - "loss": Forward and return a dict of losses according to the given
          inputs and data samples.

        Note that this method doesn't handle neither back propagation nor
        optimizer updating, which are done in the :meth:`train_step`.

        Args:
            images (torch.Tensor): The input image tensor with different ndim
                according to the inputs.
            data_samples (List[DataSample], optional): The annotation
                data of every samples. It's required if ``mode="loss"``.
                Defaults to None.
            mode (str): Return what kind of value. Defaults to 'loss'.

        Returns:
            The return type depends on ``mode``.
            - If ``mode="loss"``, return a dict of tensor.
        """

        if mode == 'loss':
            return self.loss(images, data_samples)
        elif mode == 'predict':
            return self.predict(images, data_samples)
        else:
            raise RuntimeError(f'Invalid mode "{mode}".')

    def extract_vision_feats(self, images: torch.Tensor) -> torch.Tensor:
        """Extract vision features.

        Args:
            images (torch.Tensor): For zero-shot, the input images tensor is
                with shape (B, C, H, W), for few-shot, which is
                (B, T_img, C, H, W) in general. Images in the same chunk
                are collated along T_img. Video data is not supported yet.

        Returns:
            torch.Tensor: Return extracted features.
        """
        if images.ndim == 4:
            # (B, C, H, W) -> (B, 1, C, H, W) for zero-shot.
            images = images.unsqueeze(1)
        b, T = images.shape[:2]
        # b T c h w -> (b T) c h w
        images = images.view(b * T, *images.shape[-3:])

        with torch.no_grad():
            vision_feats = self.vision_encoder(images)[-1][:, 1:]

        # (b T F) v d -> b T F v d  Only support F=1 here
        vision_feats = vision_feats.view(b, T, 1, *vision_feats.shape[-2:])

        vision_feats = self.perceiver(vision_feats)  # reshapes to (b, T, n, d)
        return vision_feats

    def predict(self,
                images: torch.Tensor,
                data_samples: Optional[List[DataSample]] = None,
                **generation_cfg):
        """Predict generation results from a batch of inputs.

        Args:
            images (torch.Tensor): For zero-shot, the input images tensor is
                with shape (B, C, H, W), for few-shot, which is
                (B, T_img, C, H, W) in general. Images in the same chunk
                are collated along T_img. Video data is not supported yet.
            data_samples (List[DataSample], optional): The annotation
                data of every samples. Defaults to None.
            **generation_cfg: Other keyword arguments accepted by the
                ``generate`` method of :attr:`lang_encoder`.

        Returns:
            List[DataSample]: Return list of data samples.
        """
        # generation_cfg in prediction should be dominant
        generation_cfg = {**self.generation_cfg, **generation_cfg}
        num_beams = generation_cfg['num_beams']

        if num_beams > 1:
            images = images.repeat_interleave(num_beams, dim=0)

        # extra vision feats and set as language condition feats
        vision_x = self.extract_vision_feats(images)
        for layer in self.lang_encoder._get_decoder_layers():
            layer.condition_vis_x(vision_x)

        input_text = self.preprocess_text(data_samples, device=images.device)

        outputs = self.lang_encoder.generate(
            input_text.input_ids,
            attention_mask=input_text.attention_mask,
            eos_token_id=self.eoc_token_id,
            **generation_cfg)

        # clear conditioned layers for language models
        self.lang_encoder.clear_conditioned_layers()

        # remove prefix
        outputs = outputs[:, len(input_text.input_ids[0]):]

        return self.post_process(outputs, data_samples)

    def preprocess_text(self, data_samples: List[DataSample],
                        device: torch.device) -> List[DataSample]:
        """Preprocess text in advance before fed into language model.

        Args:
            data_samples (List[DataSample]): The annotation
                data of every samples. Defaults to None.
            device (torch.device): Device for text to put on.

        Returns:
            List[DataSample]: Return list of data samples.
        """
        prompts = []
        for sample in data_samples:
            if 'shots' in sample:
                # few-shot
                shot_prompt = ''.join([
                    self.shot_prompt_tmpl.format(**shot)
                    for shot in sample.get('shots')
                ])
            else:
                # zero-shot
                shot_prompt = self.zeroshot_prompt

            # add final prompt
            final_prompt = self.final_prompt_tmpl.format(**sample.to_dict())
            prompts.append(shot_prompt + final_prompt)

        self.tokenizer.padding_side = 'left'
        input_text = self.tokenizer(
            prompts,
            padding='longest',
            truncation=True,
            return_tensors='pt',
            max_length=2000,
        ).to(device)
        return input_text

    def post_process(
            self, outputs: torch.Tensor,
            data_samples: Optional[List[DataSample]]) -> List[DataSample]:
        """Perform post process for outputs for different task.

        Args:
            outputs (torch.Tensor): The generated outputs.
            data_samples (List[DataSample], optional): The annotation
                data of every samples.

        Returns:
            List[DataSample]: Return list of data samples.
        """
        outputs = self.tokenizer.batch_decode(
            outputs, skip_special_tokens=True)

        if data_samples is None:
            data_samples = [DataSample() for _ in range(len(outputs))]

        for output, data_sample in zip(outputs, data_samples):
            # remove text pattern
            if self.task == 'caption':
                data_sample.pred_caption = re.split('Output', output,
                                                    1)[0].replace('"', '')
            elif self.task == 'vqa':
                data_sample.pred_answer = re.split('Question|Answer', output,
                                                   1)[0]

        return data_samples

    @staticmethod
    def _load_adapter_hook(module, incompatible_keys):
        """Avoid warning missing keys except adapter keys."""
        adapter_patterns = [
            '^perceiver',
            'lang_encoder.*embed_tokens',
            'lang_encoder.*gated_cross_attn_layers',
            'lang_encoder.*rotary_emb',
        ]
        for key in list(incompatible_keys.missing_keys):
            if not any(re.match(pattern, key) for pattern in adapter_patterns):
                incompatible_keys.missing_keys.remove(key)

        for key in list(incompatible_keys.unexpected_keys):
            if 'position_ids' in key:
                incompatible_keys.unexpected_keys.remove(key)
            if 'lang_encoder.gated_cross_attn_layers' in key:
                incompatible_keys.unexpected_keys.remove(key)