Spaces:
Runtime error
Runtime error
File size: 12,697 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# Copyright (c) OpenMMLab. All rights reserved.
import re
from typing import List, Optional
import torch
from mmengine.model import BaseModel
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
from .modules import PerceiverResampler
from .utils import ExtendModule
@MODELS.register_module()
class Flamingo(BaseModel):
"""The Open Flamingo model for multiple tasks.
Args:
vision_encoder (dict): The config of the vision encoder.
lang_encoder (dict): The config of the language encoder.
tokenizer (dict): The tokenizer to encode the text.
task (int): The task to perform prediction.
zeroshot_prompt (str): Prompt used for zero-shot inference.
Defaults to '<image>Output:'.
shot_prompt_tmpl (str): Prompt used for few-shot inference.
Defaults to ``<image>Output:{caption}<|endofchunk|>``.
final_prompt_tmpl (str): Final part of prompt used for inference.
Defaults to '<image>Output:'.
generation_cfg (dict): The extra generation config, accept the keyword
arguments of [~`transformers.GenerationConfig`].
Defaults to an empty dict.
data_preprocessor (Optional[dict]): The config for preprocessing input
data. If None or no specified type, it will use
"MutimodalDataPreprocessor" as type.
See :class:`MutimodalDataPreprocessor` for more details.
Defaults to None.
init_cfg (dict, optional): The initialization config. Defaults to None.
"""
support_tasks = {'caption', 'vqa'}
_no_split_modules = [
'TransformerEncoderLayer', 'PerceiverAttention',
'GatedCrossAttentionBlock', 'FlamingoLayer'
]
def __init__(
self,
vision_encoder: dict,
lang_encoder: dict,
tokenizer: dict,
task: str = 'caption',
zeroshot_prompt: str = '<image>Output:',
shot_prompt_tmpl: str = '<image>Output:{caption}<|endofchunk|>',
final_prompt_tmpl: str = '<image>Output:',
generation_cfg: dict = dict(),
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None):
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super().__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
if task not in self.support_tasks:
raise ValueError(f'Unsupported task {task}, please select '
f'the task from {self.support_tasks}.')
self.task = task
# init tokenizer
self.tokenizer = TOKENIZER.build(tokenizer)
# add Flamingo special tokens to the tokenizer
self.tokenizer.add_special_tokens(
{'additional_special_tokens': ['<|endofchunk|>', '<image>']})
self.tokenizer.bos_token_id = 1
if self.tokenizer.pad_token is None:
# Issue: GPT models don't have a pad token, which we use to
# modify labels for the loss.
self.tokenizer.add_special_tokens({'pad_token': '<PAD>'})
# Template to format the prompt input
self.zeroshot_prompt = zeroshot_prompt
self.shot_prompt_tmpl = shot_prompt_tmpl
self.final_prompt_tmpl = final_prompt_tmpl
# init vision encoder related modules
vision_encoder_weight = vision_encoder.pop('pretrained', None)
self.vision_encoder = MODELS.build(vision_encoder)
if vision_encoder_weight is not None:
from mmengine.runner.checkpoint import load_checkpoint
load_checkpoint(
self.vision_encoder,
vision_encoder_weight,
map_location='cpu',
revise_keys=[(r'^backbone\.', '')],
)
self.vision_encoder.is_init = True
self.perceiver = PerceiverResampler(dim=self.vision_encoder.embed_dims)
# init language encoder related modules
self.lang_encoder = ExtendModule(**lang_encoder)
self.lang_encoder.resize_token_embeddings(len(self.tokenizer))
self.lang_encoder.media_token_id = self.tokenizer.encode('<image>')[-1]
# other necessary parameters
self.eoc_token_id = self.tokenizer.encode('<|endofchunk|>')[-1]
self.generation_cfg = {
'num_beams': 1,
'max_new_tokens': None,
'temperature': 1.0,
'top_k': 0,
'top_p': 1.0,
'no_repeat_ngram_size': 0,
'prefix_allowed_tokens_fn': None,
'length_penalty': 1.0,
'num_return_sequences': 1,
'do_sample': False,
'early_stopping': False,
**generation_cfg,
}
if hasattr(self, 'register_load_state_dict_post_hook'):
self.register_load_state_dict_post_hook(self._load_adapter_hook)
def forward(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
mode: str = 'loss',
):
"""The unified entry for a forward process in both training and test.
The method should accept only one mode "loss":
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
images (torch.Tensor): The input image tensor with different ndim
according to the inputs.
data_samples (List[DataSample], optional): The annotation
data of every samples. It's required if ``mode="loss"``.
Defaults to None.
mode (str): Return what kind of value. Defaults to 'loss'.
Returns:
The return type depends on ``mode``.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def extract_vision_feats(self, images: torch.Tensor) -> torch.Tensor:
"""Extract vision features.
Args:
images (torch.Tensor): For zero-shot, the input images tensor is
with shape (B, C, H, W), for few-shot, which is
(B, T_img, C, H, W) in general. Images in the same chunk
are collated along T_img. Video data is not supported yet.
Returns:
torch.Tensor: Return extracted features.
"""
if images.ndim == 4:
# (B, C, H, W) -> (B, 1, C, H, W) for zero-shot.
images = images.unsqueeze(1)
b, T = images.shape[:2]
# b T c h w -> (b T) c h w
images = images.view(b * T, *images.shape[-3:])
with torch.no_grad():
vision_feats = self.vision_encoder(images)[-1][:, 1:]
# (b T F) v d -> b T F v d Only support F=1 here
vision_feats = vision_feats.view(b, T, 1, *vision_feats.shape[-2:])
vision_feats = self.perceiver(vision_feats) # reshapes to (b, T, n, d)
return vision_feats
def predict(self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
**generation_cfg):
"""Predict generation results from a batch of inputs.
Args:
images (torch.Tensor): For zero-shot, the input images tensor is
with shape (B, C, H, W), for few-shot, which is
(B, T_img, C, H, W) in general. Images in the same chunk
are collated along T_img. Video data is not supported yet.
data_samples (List[DataSample], optional): The annotation
data of every samples. Defaults to None.
**generation_cfg: Other keyword arguments accepted by the
``generate`` method of :attr:`lang_encoder`.
Returns:
List[DataSample]: Return list of data samples.
"""
# generation_cfg in prediction should be dominant
generation_cfg = {**self.generation_cfg, **generation_cfg}
num_beams = generation_cfg['num_beams']
if num_beams > 1:
images = images.repeat_interleave(num_beams, dim=0)
# extra vision feats and set as language condition feats
vision_x = self.extract_vision_feats(images)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
input_text = self.preprocess_text(data_samples, device=images.device)
outputs = self.lang_encoder.generate(
input_text.input_ids,
attention_mask=input_text.attention_mask,
eos_token_id=self.eoc_token_id,
**generation_cfg)
# clear conditioned layers for language models
self.lang_encoder.clear_conditioned_layers()
# remove prefix
outputs = outputs[:, len(input_text.input_ids[0]):]
return self.post_process(outputs, data_samples)
def preprocess_text(self, data_samples: List[DataSample],
device: torch.device) -> List[DataSample]:
"""Preprocess text in advance before fed into language model.
Args:
data_samples (List[DataSample]): The annotation
data of every samples. Defaults to None.
device (torch.device): Device for text to put on.
Returns:
List[DataSample]: Return list of data samples.
"""
prompts = []
for sample in data_samples:
if 'shots' in sample:
# few-shot
shot_prompt = ''.join([
self.shot_prompt_tmpl.format(**shot)
for shot in sample.get('shots')
])
else:
# zero-shot
shot_prompt = self.zeroshot_prompt
# add final prompt
final_prompt = self.final_prompt_tmpl.format(**sample.to_dict())
prompts.append(shot_prompt + final_prompt)
self.tokenizer.padding_side = 'left'
input_text = self.tokenizer(
prompts,
padding='longest',
truncation=True,
return_tensors='pt',
max_length=2000,
).to(device)
return input_text
def post_process(
self, outputs: torch.Tensor,
data_samples: Optional[List[DataSample]]) -> List[DataSample]:
"""Perform post process for outputs for different task.
Args:
outputs (torch.Tensor): The generated outputs.
data_samples (List[DataSample], optional): The annotation
data of every samples.
Returns:
List[DataSample]: Return list of data samples.
"""
outputs = self.tokenizer.batch_decode(
outputs, skip_special_tokens=True)
if data_samples is None:
data_samples = [DataSample() for _ in range(len(outputs))]
for output, data_sample in zip(outputs, data_samples):
# remove text pattern
if self.task == 'caption':
data_sample.pred_caption = re.split('Output', output,
1)[0].replace('"', '')
elif self.task == 'vqa':
data_sample.pred_answer = re.split('Question|Answer', output,
1)[0]
return data_samples
@staticmethod
def _load_adapter_hook(module, incompatible_keys):
"""Avoid warning missing keys except adapter keys."""
adapter_patterns = [
'^perceiver',
'lang_encoder.*embed_tokens',
'lang_encoder.*gated_cross_attn_layers',
'lang_encoder.*rotary_emb',
]
for key in list(incompatible_keys.missing_keys):
if not any(re.match(pattern, key) for pattern in adapter_patterns):
incompatible_keys.missing_keys.remove(key)
for key in list(incompatible_keys.unexpected_keys):
if 'position_ids' in key:
incompatible_keys.unexpected_keys.remove(key)
if 'lang_encoder.gated_cross_attn_layers' in key:
incompatible_keys.unexpected_keys.remove(key)
|