Spaces:
Runtime error
Runtime error
File size: 28,732 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
# Copyright (c) OpenMMLab. All rights reserved.
from collections import ChainMap
from copy import deepcopy
from typing import Dict, List, Optional, Tuple, Union
import mmengine.dist as dist
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModel
from torch import distributed as torch_dist
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
from mmpretrain.utils import track_on_main_process
def all_gather_concat(data: torch.Tensor) -> torch.Tensor:
"""Gather tensors with different first-dimension size and concat to one
tenosr.
Note:
Only the first dimension should be different.
Args:
data (Tensor): Tensor to be gathered.
Returns:
torch.Tensor: The concatenated tenosr.
"""
if dist.get_world_size() == 1:
return data
data_size = torch.tensor(data.size(0), device=data.device)
sizes_list = dist.all_gather(data_size)
max_length = max(sizes_list)
size_diff = max_length.item() - data_size.item()
if size_diff:
padding = torch.zeros(
size_diff, *data.size()[1:], device=data.device, dtype=data.dtype)
data = torch.cat((data, padding))
gather_list = dist.all_gather(data)
all_data = []
for tensor, size in zip(gather_list, sizes_list):
all_data.append(tensor[:size])
return torch.concat(all_data)
@MODELS.register_module()
class BlipRetrieval(BaseModel):
"""BLIP Retriever.
Args:
vision_backbone (dict): Backbone for extracting image features.
text_backbone (dict): Backbone for extracting text features.
multimodal_backbone (Optional[dict]): Backbone for extracting
multi-modal features.
vision_neck (Optional[dict]): The neck module to process image features
from vision backbone. Defaults to None.
text_neck (Optional[dict]): The neck module to process text features
from text backbone. Defaults to None.
head (Optional[Union[List[dict], dict]]): The head module to calculate
loss from processed single modality features.
See :mod:`mmmultimodal.models.heads`.
Notice that if the head is not set, `loss` method cannot be used.
Defaults to None.
multimodal_head (Optional[Union[List[dict], dict]]): The multi-modal
head module to calculate loss from processed multimodal features.
See :mod:`mmmultimodal.models.heads`.
Notice that if the head is not set, `loss` method cannot be used.
Defaults to None.
momentum (float): Momentum used for momentum contrast.
Defaults to .995.
negative_all_rank (bool): Whether to sample negative data from all
ranks for image text matching in training. Defaults to True.
temperature (float): Temperature parameter that controls the
concentration level of the distribution. Defaults to 0.07.
fast_match (bool): If False, select topk similarity as candidates and
compute the matching score. If True, return the similarity as the
matching score directly. Defaults to False.
topk (int): Select topk similarity as candidates for compute matching
scores. Notice that this is not the topk in evaluation.
Defaults to 256.
data_preprocessor (Optional[dict]): The config for preprocessing input
data. If None or no specified type, it will use
"MutimodalDataPreprocessor" as type.
See :class:`MutimodalDataPreprocessor` for more details.
Defaults to None.
init_cfg (Optional[dict]): the config to control the initialization.
Defaults to None.
"""
def __init__(self,
vision_backbone: dict,
text_backbone: dict,
multimodal_backbone: Optional[dict] = None,
vision_neck: Optional[dict] = None,
text_neck: Optional[dict] = None,
head: Optional[Union[List[dict], dict]] = None,
multimodal_head: Optional[Union[List[dict], dict]] = None,
tokenizer: Optional[dict] = None,
momentum: float = .995,
negative_all_rank: bool = True,
temperature: float = 0.07,
fast_match: bool = False,
topk: int = 256,
max_txt_len: int = 20,
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None):
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super().__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
self.vision_backbone = MODELS.build(vision_backbone)
self.text_backbone = MODELS.build(text_backbone)
if multimodal_backbone is not None:
self.multimodal_backbone = MODELS.build(multimodal_backbone)
if vision_neck is not None:
self.vision_neck = MODELS.build(vision_neck)
if text_neck is not None:
self.text_neck = MODELS.build(text_neck)
if head is not None:
self.head = MODELS.build(head)
if multimodal_head is not None:
self.multimodal_head = MODELS.build(multimodal_head)
if tokenizer is not None:
self.tokenizer = TOKENIZER.build(tokenizer)
self.momentum = momentum
self.negative_all_rank = negative_all_rank
self.temp = nn.Parameter(temperature * torch.ones([]))
# Shares the same para
self.head.temp = self.temp
# create the momentum encoder
self.vision_backbone_m = deepcopy(self.vision_backbone)
self.text_backbone_m = deepcopy(self.text_backbone)
self.vision_neck_m = deepcopy(self.vision_neck)
self.text_neck_m = deepcopy(self.text_neck)
self.model_pairs = [
[self.vision_backbone, self.vision_backbone_m],
[self.text_backbone, self.text_backbone_m],
[self.vision_neck, self.vision_neck_m],
[self.text_neck, self.text_neck_m],
]
self.copy_params()
# multimodal backbone shares weights with text backbone in BLIP
# No need to set up
# Notice that this topk is used for select k candidate to compute
# image-text score, but not the final metric topk in evaluation.
self.fast_match = fast_match
self.topk = topk
self.max_txt_len = max_txt_len
@property
def device(self):
return next(self.parameters()).device
def preprocess_text(self, data_samples):
sample_item = data_samples[0]
if sample_item is not None and 'text' in sample_item:
if isinstance(sample_item.get('text'), (list, tuple)):
texts = []
for sample in data_samples:
texts.extend(sample.get('text'))
elif isinstance(sample_item.get('text'), str):
texts = [sample.get('text') for sample in data_samples]
else:
raise TypeError('text must be a string or a list of strings')
else:
return None
# perform tokenize first if satisfied conditions
texts = self.tokenizer(
texts,
padding='max_length',
truncation=True,
max_length=self.max_txt_len,
return_tensors='pt',
).to(self.device)
return texts
def forward(self,
images: torch.tensor = None,
data_samples: Optional[List[DataSample]] = None,
mode: str = 'tensor') -> Union[Tuple, dict]:
"""The unified entry for a forward process in both training and test.
The method should accept two modes: "tensor", and "loss":
- "tensor": Forward the whole network and return tensor without any
post-processing, same as a common nn.Module.
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
For unified "predict" mode in other mm repos. It is noticed that
image-text retrieval cannot perform batch prediction since it will go
through all the samples. A standard process of retrieval evaluation is
to extract and collect all feats, and then predict all samples.
Therefore the `predict` mode here is remained as a trigger
to inform use to choose the right configurations.
Args:
images (torch.Tensor): The input inputs tensor of shape
(N, C, ...) in general.
data_samples (List[DataSample], optional): The annotation
data of every samples. It's required if ``mode="loss"``.
Defaults to None.
mode (str): Return what kind of value. Defaults to 'tensor'.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tuple.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'tensor':
return self.extract_feat(images, data_samples)
elif mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def extract_feat(
self,
images: torch.Tensor = None,
data_samples: List[DataSample] = None,
return_texts=True,
return_embeds=None,
) -> Dict[str, torch.Tensor]:
"""Extract features from the input dict.
Args:
images (tensor, optional): The images to extract features.
Defaults to None.
data_samples (list, optional): The data samples containing texts
to extract features. Defaults to None.
return_texts (bool): Whether to return the tokenized text and the
corresponding attention masks. Defaults to True.
return_embeds (bool): Whether to return the text embedding and
image embedding. Defaults to None, which means to use
``self.fast_match``.
Returns:
Tuple[torch.Tensor]: The output features.
If multimodal_backbone is not exist, tuple of torch.Tensor
will be returned.
"""
if data_samples is not None:
texts = self.preprocess_text(data_samples)
else:
texts = None
assert images is not None or texts is not None, \
'At least single modality should be passed as inputs.'
results = {}
if texts is not None and return_texts:
results.update({
'text_ids': texts.input_ids,
'text_attn_mask': texts.attention_mask,
})
if return_embeds is None:
return_embeds = not self.fast_match
# extract image features
if images is not None:
output = self._extract_feat(images, modality='images')
results['image_feat'] = output['image_feat']
if return_embeds:
results['image_embeds'] = output['image_embeds']
# extract text features
if texts is not None:
output = self._extract_feat(texts, modality='texts')
results['text_feat'] = output['text_feat']
if return_embeds:
results['text_embeds'] = output['text_embeds']
return results
def _extract_feat(self, inputs: Union[torch.Tensor, dict],
modality: str) -> Tuple[torch.Tensor]:
"""Extract features from the single modality.
Args:
inputs (Union[torch.Tensor, dict]): A batch of inputs.
For image, a tensor of shape (N, C, ...) in general.
For text, a dict of tokenized text inputs.
modality (str): Modality feature to be extracted. Only two
options are supported.
- ``images``: Only extract image features, mostly used for
inference.
- ``texts``: Only extract text features, mostly used for
inference.
Returns:
Tuple[torch.Tensor]: The output features.
"""
if modality == 'images':
# extract image features
image_embeds = self.vision_backbone(inputs)[0]
image_feat = F.normalize(
self.vision_neck(image_embeds[:, 0, :]), dim=-1)
return {'image_embeds': image_embeds, 'image_feat': image_feat}
elif modality == 'texts':
# extract text features
text_output = self.text_backbone(
inputs.input_ids,
attention_mask=inputs.attention_mask,
token_type_ids=None,
return_dict=True,
mode='text',
)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(
self.text_neck(text_embeds[:, 0, :]), dim=-1)
return {'text_embeds': text_embeds, 'text_feat': text_feat}
else:
raise RuntimeError(f'Invalid modality "{modality}".')
def loss(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
) -> Dict[str, torch.tensor]:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (dict): A batch of inputs. The input tensor with of
at least one modality. For image, the value is a tensor
of shape (N, C, ...) in general.
For text, the value is a dict of tokenized text inputs.
data_samples (Optional[List[DataSample]]):
The annotation data of every samples. Defaults to None.
Returns:
Dict[str, torch.tensor]: a dictionary of loss components of
both head and multimodal head.
"""
output = self.extract_feat(images, data_samples, return_embeds=True)
text_ids = output['text_ids']
text_attn_mask = output['text_attn_mask']
image_embeds = output['image_embeds']
image_feat = output['image_feat']
text_feat = output['text_feat']
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(self.device)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.vision_backbone_m(images)[0]
image_feat_m = F.normalize(
self.vision_neck_m(image_embeds_m[:, 0, :]), dim=-1)
text_output_m = self.text_backbone_m(
text_ids,
attention_mask=text_attn_mask,
token_type_ids=None,
return_dict=True,
mode='text',
)
text_embeds_m = text_output_m.last_hidden_state
text_feat_m = F.normalize(
self.text_neck_m(text_embeds_m[:, 0, :]), dim=-1)
loss = self.head.loss(
([image_feat, text_feat, image_feat_m, text_feat_m], ),
data_samples)
# prepare for itm
encoder_input_ids = text_ids.clone()
encoder_input_ids[:,
0] = self.tokenizer.additional_special_tokens_ids[0]
output_pos = self.text_backbone(
encoder_input_ids,
attention_mask=text_attn_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
idx = torch.tensor([i.image_id for i in data_samples]).view(-1, 1)
bs = idx.size(0)
idxs = torch.cat(dist.all_gather(idx))
if self.negative_all_rank:
# compute sample similarity
with torch.no_grad():
mask = torch.eq(idx, idxs.t()).to(self.device)
image_feat_world = torch.cat(dist.all_gather(image_feat))
text_feat_world = torch.cat(dist.all_gather(text_feat))
sim_i2t = image_feat @ text_feat_world.t() / self.temp
sim_t2i = text_feat @ image_feat_world.t() / self.temp
weights_i2t = F.softmax(sim_i2t, dim=1)
weights_i2t.masked_fill_(mask, 0)
weights_t2i = F.softmax(sim_t2i, dim=1)
weights_t2i.masked_fill_(mask, 0)
world_size = dist.get_world_size()
if world_size == 1:
image_embeds_world = image_embeds
else:
image_embeds_world = torch.cat(
torch_dist.nn.all_gather(image_embeds))
# select a negative image (from all ranks) for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds_world[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text (from all ranks) for each image
input_ids_world = torch.cat(dist.all_gather(encoder_input_ids))
att_mask_world = torch.cat(dist.all_gather(text_attn_mask))
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(input_ids_world[neg_idx])
text_atts_neg.append(att_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg], dim=0)
text_atts_all = torch.cat([text_attn_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
output_neg = self.text_backbone(
text_ids_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = torch.cat(
[
output_pos.last_hidden_state[:, 0, :],
output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
# create false data samples
data_samples.extend(
[DataSample(is_matched=False) for _ in range(2 * bs)])
loss_multimodal = self.multimodal_head.loss((vl_embeddings, ),
data_samples)
return dict(ChainMap(loss, loss_multimodal))
def predict(self, images, data_samples, cal_i2t=True, cal_t2i=True):
feats = self.extract_feat(images, data_samples)
return self.predict_all(
feats, data_samples, cal_i2t=cal_i2t, cal_t2i=cal_t2i)
def predict_all(self,
feats,
data_samples,
num_images=None,
num_texts=None,
cal_i2t=True,
cal_t2i=True):
text_ids = feats['text_ids']
text_ids[:, 0] = self.tokenizer.additional_special_tokens_ids[0]
text_attn_mask = feats['text_attn_mask']
image_embeds = feats.get('image_embeds', None)
image_feat = feats['image_feat']
text_feat = feats['text_feat']
num_images = num_images or image_feat.size(0)
num_texts = num_texts or text_feat.size(0)
if not self.fast_match:
image_embeds_all = all_gather_concat(image_embeds)[:num_images]
else:
image_embeds_all = None
image_feat_all = all_gather_concat(image_feat)[:num_images]
text_feat_all = all_gather_concat(text_feat)[:num_texts]
text_ids_all = all_gather_concat(text_ids)[:num_texts]
text_attn_mask_all = all_gather_concat(text_attn_mask)[:num_texts]
results = []
if cal_i2t:
result_i2t = self.compute_score_matrix_i2t(
image_feat,
image_embeds,
text_feat_all,
text_ids_all,
text_attn_mask_all,
)
results.append(
self._get_predictions(result_i2t, data_samples, mode='i2t'))
if cal_t2i:
result_t2i = self.compute_score_matrix_t2i(
image_feat_all,
image_embeds_all,
text_feat,
text_ids,
text_attn_mask,
)
results.append(
self._get_predictions(result_t2i, data_samples, mode='t2i'))
return tuple(results)
def compute_score_matrix_i2t(self, img_feats, img_embeds, text_feats,
text_ids, text_atts):
"""Compare the score matrix for image-to-text retrieval. Every image
should compare to all the text features.
Args:
img_feats (torch.Tensor): The input img feats tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
img_embeds (torch.Tensor): The input img embeds tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
text_feats (torch.Tensor): The input text feats tensor with shape
(N, C). N stands for numbers of all samples on all GPUs.
text_ids (torch.Tensor): The input tensor with shape (N, C).
text_atts (torch.Tensor): The input tensor with shape (N, C).
Returns:
torch.Tensor: Score matrix of image-to-text retrieval.
"""
# compute i2t sim matrix
sim_matrix_i2t = img_feats @ text_feats.t()
if self.fast_match:
return sim_matrix_i2t
score_matrix_i2t = torch.full((img_feats.size(0), text_feats.size(0)),
-100.0).to(self.device)
for i in track_on_main_process(
range(img_feats.size(0)), 'Compute I2T scores...'):
sims = sim_matrix_i2t[i]
topk_sim, topk_idx = sims.topk(k=self.topk, dim=0)
encoder_output = img_embeds[i].repeat(self.topk, 1, 1)
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long).to(self.device)
output = self.text_backbone(
text_ids[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = self.multimodal_head(
(output.last_hidden_state[:, 0, :], ))[:, 1]
score_matrix_i2t[i, topk_idx] = score + topk_sim
return score_matrix_i2t
def compute_score_matrix_t2i(self, img_feats, img_embeds, text_feats,
text_ids, text_atts):
"""Compare the score matrix for text-to-image retrieval. Every text
should compare to all the image features.
Args:
img_feats (torch.Tensor): The input img feats tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
img_embeds (torch.Tensor): The input img embeds tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
text_feats (torch.Tensor): The input text feats tensor with shape
(N, C). N stands for numbers of all samples on all GPUs.
text_ids (torch.Tensor): The input tensor with shape (M, C).
text_atts (torch.Tensor): The input tensor with shape (M, C).
Returns:
torch.Tensor: Score matrix of text-to-image retrieval.
"""
# compute t2i sim matrix
sim_matrix_t2i = text_feats @ img_feats.t()
if self.fast_match:
return sim_matrix_t2i
score_matrix_t2i = torch.full((text_feats.size(0), img_feats.size(0)),
-100.0).to(self.device)
for i in track_on_main_process(
range(text_feats.size(0)), 'Compute T2I scores...'):
sims = sim_matrix_t2i[i]
topk_sim, topk_idx = sims.topk(k=self.topk, dim=0)
encoder_output = img_embeds[topk_idx]
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long).to(self.device)
output = self.text_backbone(
text_ids[i].repeat(self.topk, 1),
attention_mask=text_atts[i].repeat(self.topk, 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = self.multimodal_head(
(output.last_hidden_state[:, 0, :], ))[:, 1]
score_matrix_t2i[i, topk_idx] = score + topk_sim
return score_matrix_t2i
def _get_predictions(self,
result: torch.Tensor,
data_samples: List[DataSample],
mode: str = 'i2t'):
"""Post-process the output of retriever.
Args:
result (torch.Tensor): Score matrix of single retrieve,
either from image or text.
data_samples (List[DataSample], optional): The annotation
data of every samples.
mode (str): Retrieve mode, either `i2t` for image to text, or `t2i`
text to image. Defaults to `i2t`.
Returns:
List[DataSample]: the raw data_samples with
the predicted results.
"""
# create data sample if not exists
if data_samples is None:
data_samples = [DataSample() for _ in range(result.size(0))]
elif mode == 't2i':
# Process data samples to align with the num of texts.
new_data_samples = []
for sample in data_samples:
if isinstance(sample.text, (list, tuple)):
texts = sample.text
else:
texts = [sample.text]
for i, text in enumerate(texts):
new_sample = DataSample(text=text)
if 'gt_image_id' in sample:
new_sample.gt_label = sample.gt_image_id[i]
new_data_samples.append(new_sample)
assert len(new_data_samples) == result.size(0)
data_samples = new_data_samples
elif mode == 'i2t':
for sample in data_samples:
if 'gt_text_id' in sample:
sample.gt_label = sample.gt_text_id
else:
raise ValueError(f'Type {mode} is not supported.')
for data_sample, score in zip(data_samples, result):
idx = score.argmax(keepdim=True).detach()
data_sample.set_pred_score(score)
data_sample.set_pred_label(idx)
return data_samples
# TODO: add temperaily
@torch.no_grad()
def copy_params(self):
for model_pair in self.model_pairs:
for param, param_m in zip(model_pair[0].parameters(),
model_pair[1].parameters()):
param_m.data.copy_(param.data) # initialize
param_m.requires_grad = False # not update by gradient
@torch.no_grad()
def _momentum_update(self):
for model_pair in self.model_pairs:
for (name,
param), (name_m,
param_m) in zip(model_pair[0].named_parameters(),
model_pair[1].named_parameters()):
# hack to behave the same
if any([i in name for i in ['8', '9', '10', '11']
]) and 'layers' in name and any(
[i in name for i in ['attn', 'ffn']]):
param_m.data = param.data
else:
param_m.data = param_m.data * self.momentum + \
param.data * (1.0 - self.momentum)
|