File size: 7,665 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

try:
    import mmpretrain
    from mmpretrain.evaluation.metrics import Accuracy
except ImportError:
    mmpretrain = None

from mmengine.model import BaseModule

from mmdet.registry import MODELS
from mmdet.structures import ReIDDataSample
from .fc_module import FcModule


@MODELS.register_module()
class LinearReIDHead(BaseModule):
    """Linear head for re-identification.

    Args:
        num_fcs (int): Number of fcs.
        in_channels (int): Number of channels in the input.
        fc_channels (int): Number of channels in the fcs.
        out_channels (int): Number of channels in the output.
        norm_cfg (dict, optional): Configuration of normlization method
            after fc. Defaults to None.
        act_cfg (dict, optional): Configuration of activation method after fc.
            Defaults to None.
        num_classes (int, optional): Number of the identities. Default to None.
        loss_cls (dict, optional): Cross entropy loss to train the ReID module.
            Defaults to None.
        loss_triplet (dict, optional): Triplet loss to train the ReID module.
            Defaults to None.
        topk (int | Tuple[int]): Top-k accuracy. Defaults to ``(1, )``.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to dict(type='Normal',layer='Linear', mean=0, std=0.01,
            bias=0).
    """

    def __init__(self,
                 num_fcs: int,
                 in_channels: int,
                 fc_channels: int,
                 out_channels: int,
                 norm_cfg: Optional[dict] = None,
                 act_cfg: Optional[dict] = None,
                 num_classes: Optional[int] = None,
                 loss_cls: Optional[dict] = None,
                 loss_triplet: Optional[dict] = None,
                 topk: Union[int, Tuple[int]] = (1, ),
                 init_cfg: Union[dict, List[dict]] = dict(
                     type='Normal', layer='Linear', mean=0, std=0.01, bias=0)):
        if mmpretrain is None:
            raise RuntimeError('Please run "pip install openmim" and '
                               'run "mim install mmpretrain" to '
                               'install mmpretrain first.')
        super(LinearReIDHead, self).__init__(init_cfg=init_cfg)

        assert isinstance(topk, (int, tuple))
        if isinstance(topk, int):
            topk = (topk, )
        for _topk in topk:
            assert _topk > 0, 'Top-k should be larger than 0'
        self.topk = topk

        if loss_cls is None:
            if isinstance(num_classes, int):
                warnings.warn('Since cross entropy is not set, '
                              'the num_classes will be ignored.')
            if loss_triplet is None:
                raise ValueError('Please choose at least one loss in '
                                 'triplet loss and cross entropy loss.')
        elif not isinstance(num_classes, int):
            raise TypeError('The num_classes must be a current number, '
                            'if there is cross entropy loss.')
        self.loss_cls = MODELS.build(loss_cls) if loss_cls else None
        self.loss_triplet = MODELS.build(loss_triplet) \
            if loss_triplet else None

        self.num_fcs = num_fcs
        self.in_channels = in_channels
        self.fc_channels = fc_channels
        self.out_channels = out_channels
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.num_classes = num_classes

        self._init_layers()

    def _init_layers(self):
        """Initialize fc layers."""
        self.fcs = nn.ModuleList()
        for i in range(self.num_fcs):
            in_channels = self.in_channels if i == 0 else self.fc_channels
            self.fcs.append(
                FcModule(in_channels, self.fc_channels, self.norm_cfg,
                         self.act_cfg))
        in_channels = self.in_channels if self.num_fcs == 0 else \
            self.fc_channels
        self.fc_out = nn.Linear(in_channels, self.out_channels)
        if self.loss_cls:
            self.bn = nn.BatchNorm1d(self.out_channels)
            self.classifier = nn.Linear(self.out_channels, self.num_classes)

    def forward(self, feats: Tuple[torch.Tensor]) -> torch.Tensor:
        """The forward process."""
        # Multiple stage inputs are acceptable
        # but only the last stage will be used.
        feats = feats[-1]

        for m in self.fcs:
            feats = m(feats)
        feats = self.fc_out(feats)
        return feats

    def loss(self, feats: Tuple[torch.Tensor],
             data_samples: List[ReIDDataSample]) -> dict:
        """Calculate losses.

        Args:
            feats (tuple[Tensor]): The features extracted from the backbone.
            data_samples (List[ReIDDataSample]): The annotation data of
                every samples.

        Returns:
            dict: a dictionary of loss components
        """
        # The part can be traced by torch.fx
        feats = self(feats)

        # The part can not be traced by torch.fx
        losses = self.loss_by_feat(feats, data_samples)
        return losses

    def loss_by_feat(self, feats: torch.Tensor,
                     data_samples: List[ReIDDataSample]) -> dict:
        """Unpack data samples and compute loss."""
        losses = dict()
        gt_label = torch.cat([i.gt_label.label for i in data_samples])
        gt_label = gt_label.to(feats.device)

        if self.loss_triplet:
            losses['triplet_loss'] = self.loss_triplet(feats, gt_label)

        if self.loss_cls:
            feats_bn = self.bn(feats)
            cls_score = self.classifier(feats_bn)
            losses['ce_loss'] = self.loss_cls(cls_score, gt_label)
            acc = Accuracy.calculate(cls_score, gt_label, topk=self.topk)
            losses.update(
                {f'accuracy_top-{k}': a
                 for k, a in zip(self.topk, acc)})

        return losses

    def predict(
            self,
            feats: Tuple[torch.Tensor],
            data_samples: List[ReIDDataSample] = None) -> List[ReIDDataSample]:
        """Inference without augmentation.

        Args:
            feats (Tuple[Tensor]): The features extracted from the backbone.
                Multiple stage inputs are acceptable but only the last stage
                will be used.
            data_samples (List[ReIDDataSample], optional): The annotation
                data of every samples. If not None, set ``pred_label`` of
                the input data samples. Defaults to None.

        Returns:
            List[ReIDDataSample]: A list of data samples which contains the
            predicted results.
        """
        # The part can be traced by torch.fx
        feats = self(feats)

        # The part can not be traced by torch.fx
        data_samples = self.predict_by_feat(feats, data_samples)

        return data_samples

    def predict_by_feat(
            self,
            feats: torch.Tensor,
            data_samples: List[ReIDDataSample] = None) -> List[ReIDDataSample]:
        """Add prediction features to data samples."""
        if data_samples is not None:
            for data_sample, feat in zip(data_samples, feats):
                data_sample.pred_feature = feat
        else:
            data_samples = []
            for feat in feats:
                data_sample = ReIDDataSample()
                data_sample.pred_feature = feat
                data_samples.append(data_sample)

        return data_samples