File size: 27,332 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Tuple, Union

import torch
from mmengine.model import BaseModule
from torch import Tensor, nn

from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_xyxy_to_cxcywh
from mmdet.utils import OptConfigType
from .deformable_detr_layers import DeformableDetrTransformerDecoder
from .utils import MLP, coordinate_to_encoding, inverse_sigmoid


class DinoTransformerDecoder(DeformableDetrTransformerDecoder):
    """Transformer decoder of DINO."""

    def _init_layers(self) -> None:
        """Initialize decoder layers."""
        super()._init_layers()
        self.ref_point_head = MLP(self.embed_dims * 2, self.embed_dims,
                                  self.embed_dims, 2)
        self.norm = nn.LayerNorm(self.embed_dims)

    def forward(self, query: Tensor, value: Tensor, key_padding_mask: Tensor,
                self_attn_mask: Tensor, reference_points: Tensor,
                spatial_shapes: Tensor, level_start_index: Tensor,
                valid_ratios: Tensor, reg_branches: nn.ModuleList,
                **kwargs) -> Tuple[Tensor]:
        """Forward function of Transformer decoder.

        Args:
            query (Tensor): The input query, has shape (num_queries, bs, dim).
            value (Tensor): The input values, has shape (num_value, bs, dim).
            key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
                input. ByteTensor, has shape (num_queries, bs).
            self_attn_mask (Tensor): The attention mask to prevent information
                leakage from different denoising groups and matching parts, has
                shape (num_queries_total, num_queries_total). It is `None` when
                `self.training` is `False`.
            reference_points (Tensor): The initial reference, has shape
                (bs, num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).
            reg_branches: (obj:`nn.ModuleList`): Used for refining the
                regression results.

        Returns:
            tuple[Tensor]: Output queries and references of Transformer
                decoder

            - query (Tensor): Output embeddings of the last decoder, has
              shape (num_queries, bs, embed_dims) when `return_intermediate`
              is `False`. Otherwise, Intermediate output embeddings of all
              decoder layers, has shape (num_decoder_layers, num_queries, bs,
              embed_dims).
            - reference_points (Tensor): The reference of the last decoder
              layer, has shape (bs, num_queries, 4)  when `return_intermediate`
              is `False`. Otherwise, Intermediate references of all decoder
              layers, has shape (num_decoder_layers, bs, num_queries, 4). The
              coordinates are arranged as (cx, cy, w, h)
        """
        intermediate = []
        intermediate_reference_points = [reference_points]
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = \
                    reference_points[:, :, None] * torch.cat(
                        [valid_ratios, valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = \
                    reference_points[:, :, None] * valid_ratios[:, None]

            query_sine_embed = coordinate_to_encoding(
                reference_points_input[:, :, 0, :])
            query_pos = self.ref_point_head(query_sine_embed)

            query = layer(
                query,
                query_pos=query_pos,
                value=value,
                key_padding_mask=key_padding_mask,
                self_attn_mask=self_attn_mask,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                valid_ratios=valid_ratios,
                reference_points=reference_points_input,
                **kwargs)

            if reg_branches is not None:
                tmp = reg_branches[lid](query)
                assert reference_points.shape[-1] == 4
                new_reference_points = tmp + inverse_sigmoid(
                    reference_points, eps=1e-3)
                new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            if self.return_intermediate:
                intermediate.append(self.norm(query))
                intermediate_reference_points.append(new_reference_points)
                # NOTE this is for the "Look Forward Twice" module,
                # in the DeformDETR, reference_points was appended.

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(
                intermediate_reference_points)

        return query, reference_points


class CdnQueryGenerator(BaseModule):
    """Implement query generator of the Contrastive denoising (CDN) proposed in
    `DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object
    Detection <https://arxiv.org/abs/2203.03605>`_

    Code is modified from the `official github repo
    <https://github.com/IDEA-Research/DINO>`_.

    Args:
        num_classes (int): Number of object classes.
        embed_dims (int): The embedding dimensions of the generated queries.
        num_matching_queries (int): The queries number of the matching part.
            Used for generating dn_mask.
        label_noise_scale (float): The scale of label noise, defaults to 0.5.
        box_noise_scale (float): The scale of box noise, defaults to 1.0.
        group_cfg (:obj:`ConfigDict` or dict, optional): The config of the
            denoising queries grouping, includes `dynamic`, `num_dn_queries`,
            and `num_groups`. Two grouping strategies, 'static dn groups' and
            'dynamic dn groups', are supported. When `dynamic` is `False`,
            the `num_groups` should be set, and the number of denoising query
            groups will always be `num_groups`. When `dynamic` is `True`, the
            `num_dn_queries` should be set, and the group number will be
            dynamic to ensure that the denoising queries number will not exceed
            `num_dn_queries` to prevent large fluctuations of memory. Defaults
            to `None`.
    """

    def __init__(self,
                 num_classes: int,
                 embed_dims: int,
                 num_matching_queries: int,
                 label_noise_scale: float = 0.5,
                 box_noise_scale: float = 1.0,
                 group_cfg: OptConfigType = None) -> None:
        super().__init__()
        self.num_classes = num_classes
        self.embed_dims = embed_dims
        self.num_matching_queries = num_matching_queries
        self.label_noise_scale = label_noise_scale
        self.box_noise_scale = box_noise_scale

        # prepare grouping strategy
        group_cfg = {} if group_cfg is None else group_cfg
        self.dynamic_dn_groups = group_cfg.get('dynamic', True)
        if self.dynamic_dn_groups:
            if 'num_dn_queries' not in group_cfg:
                warnings.warn("'num_dn_queries' should be set when using "
                              'dynamic dn groups, use 100 as default.')
            self.num_dn_queries = group_cfg.get('num_dn_queries', 100)
            assert isinstance(self.num_dn_queries, int), \
                f'Expected the num_dn_queries to have type int, but got ' \
                f'{self.num_dn_queries}({type(self.num_dn_queries)}). '
        else:
            assert 'num_groups' in group_cfg, \
                'num_groups should be set when using static dn groups'
            self.num_groups = group_cfg['num_groups']
            assert isinstance(self.num_groups, int), \
                f'Expected the num_groups to have type int, but got ' \
                f'{self.num_groups}({type(self.num_groups)}). '

        # NOTE The original repo of DINO set the num_embeddings 92 for coco,
        # 91 (0~90) of which represents target classes and the 92 (91)
        # indicates `Unknown` class. However, the embedding of `unknown` class
        # is not used in the original DINO.
        # TODO: num_classes + 1 or num_classes ?
        self.label_embedding = nn.Embedding(self.num_classes, self.embed_dims)

    def __call__(self, batch_data_samples: SampleList) -> tuple:
        """Generate contrastive denoising (cdn) queries with ground truth.

        Descriptions of the Number Values in code and comments:
            - num_target_total: the total target number of the input batch
              samples.
            - max_num_target: the max target number of the input batch samples.
            - num_noisy_targets: the total targets number after adding noise,
              i.e., num_target_total * num_groups * 2.
            - num_denoising_queries: the length of the output batched queries,
              i.e., max_num_target * num_groups * 2.

        NOTE The format of input bboxes in batch_data_samples is unnormalized
        (x, y, x, y), and the output bbox queries are embedded by normalized
        (cx, cy, w, h) format bboxes going through inverse_sigmoid.

        Args:
            batch_data_samples (list[:obj:`DetDataSample`]): List of the batch
                data samples, each includes `gt_instance` which has attributes
                `bboxes` and `labels`. The `bboxes` has unnormalized coordinate
                format (x, y, x, y).

        Returns:
            tuple: The outputs of the dn query generator.

            - dn_label_query (Tensor): The output content queries for denoising
              part, has shape (bs, num_denoising_queries, dim), where
              `num_denoising_queries = max_num_target * num_groups * 2`.
            - dn_bbox_query (Tensor): The output reference bboxes as positions
              of queries for denoising part, which are embedded by normalized
              (cx, cy, w, h) format bboxes going through inverse_sigmoid, has
              shape (bs, num_denoising_queries, 4) with the last dimension
              arranged as (cx, cy, w, h).
            - attn_mask (Tensor): The attention mask to prevent information
              leakage from different denoising groups and matching parts,
              will be used as `self_attn_mask` of the `decoder`, has shape
              (num_queries_total, num_queries_total), where `num_queries_total`
              is the sum of `num_denoising_queries` and `num_matching_queries`.
            - dn_meta (Dict[str, int]): The dictionary saves information about
              group collation, including 'num_denoising_queries' and
              'num_denoising_groups'. It will be used for split outputs of
              denoising and matching parts and loss calculation.
        """
        # normalize bbox and collate ground truth (gt)
        gt_labels_list = []
        gt_bboxes_list = []
        for sample in batch_data_samples:
            img_h, img_w = sample.img_shape
            bboxes = sample.gt_instances.bboxes
            factor = bboxes.new_tensor([img_w, img_h, img_w,
                                        img_h]).unsqueeze(0)
            bboxes_normalized = bboxes / factor
            gt_bboxes_list.append(bboxes_normalized)
            gt_labels_list.append(sample.gt_instances.labels)
        gt_labels = torch.cat(gt_labels_list)  # (num_target_total, 4)
        gt_bboxes = torch.cat(gt_bboxes_list)

        num_target_list = [len(bboxes) for bboxes in gt_bboxes_list]
        max_num_target = max(num_target_list)
        num_groups = self.get_num_groups(max_num_target)

        dn_label_query = self.generate_dn_label_query(gt_labels, num_groups)
        dn_bbox_query = self.generate_dn_bbox_query(gt_bboxes, num_groups)

        # The `batch_idx` saves the batch index of the corresponding sample
        # for each target, has shape (num_target_total).
        batch_idx = torch.cat([
            torch.full_like(t.long(), i) for i, t in enumerate(gt_labels_list)
        ])
        dn_label_query, dn_bbox_query = self.collate_dn_queries(
            dn_label_query, dn_bbox_query, batch_idx, len(batch_data_samples),
            num_groups)

        attn_mask = self.generate_dn_mask(
            max_num_target, num_groups, device=dn_label_query.device)

        dn_meta = dict(
            num_denoising_queries=int(max_num_target * 2 * num_groups),
            num_denoising_groups=num_groups)

        return dn_label_query, dn_bbox_query, attn_mask, dn_meta

    def get_num_groups(self, max_num_target: int = None) -> int:
        """Calculate denoising query groups number.

        Two grouping strategies, 'static dn groups' and 'dynamic dn groups',
        are supported. When `self.dynamic_dn_groups` is `False`, the number
        of denoising query groups will always be `self.num_groups`. When
        `self.dynamic_dn_groups` is `True`, the group number will be dynamic,
        ensuring the denoising queries number will not exceed
        `self.num_dn_queries` to prevent large fluctuations of memory.

        NOTE The `num_group` is shared for different samples in a batch. When
        the target numbers in the samples varies, the denoising queries of the
        samples containing fewer targets are padded to the max length.

        Args:
            max_num_target (int, optional): The max target number of the batch
                samples. It will only be used when `self.dynamic_dn_groups` is
                `True`. Defaults to `None`.

        Returns:
            int: The denoising group number of the current batch.
        """
        if self.dynamic_dn_groups:
            assert max_num_target is not None, \
                'group_queries should be provided when using ' \
                'dynamic dn groups'
            if max_num_target == 0:
                num_groups = 1
            else:
                num_groups = self.num_dn_queries // max_num_target
        else:
            num_groups = self.num_groups
        if num_groups < 1:
            num_groups = 1
        return int(num_groups)

    def generate_dn_label_query(self, gt_labels: Tensor,
                                num_groups: int) -> Tensor:
        """Generate noisy labels and their query embeddings.

        The strategy for generating noisy labels is: Randomly choose labels of
        `self.label_noise_scale * 0.5` proportion and override each of them
        with a random object category label.

        NOTE Not add noise to all labels. Besides, the `self.label_noise_scale
        * 0.5` arg is the ratio of the chosen positions, which is higher than
        the actual proportion of noisy labels, because the labels to override
        may be correct. And the gap becomes larger as the number of target
        categories decreases. The users should notice this and modify the scale
        arg or the corresponding logic according to specific dataset.

        Args:
            gt_labels (Tensor): The concatenated gt labels of all samples
                in the batch, has shape (num_target_total, ) where
                `num_target_total = sum(num_target_list)`.
            num_groups (int): The number of denoising query groups.

        Returns:
            Tensor: The query embeddings of noisy labels, has shape
            (num_noisy_targets, embed_dims), where `num_noisy_targets =
            num_target_total * num_groups * 2`.
        """
        assert self.label_noise_scale > 0
        gt_labels_expand = gt_labels.repeat(2 * num_groups,
                                            1).view(-1)  # Note `* 2`  # noqa
        p = torch.rand_like(gt_labels_expand.float())
        chosen_indice = torch.nonzero(p < (self.label_noise_scale * 0.5)).view(
            -1)  # Note `* 0.5`
        new_labels = torch.randint_like(chosen_indice, 0, self.num_classes)
        noisy_labels_expand = gt_labels_expand.scatter(0, chosen_indice,
                                                       new_labels)
        dn_label_query = self.label_embedding(noisy_labels_expand)
        return dn_label_query

    def generate_dn_bbox_query(self, gt_bboxes: Tensor,
                               num_groups: int) -> Tensor:
        """Generate noisy bboxes and their query embeddings.

        The strategy for generating noisy bboxes is as follow:

        .. code:: text

            +--------------------+
            |      negative      |
            |    +----------+    |
            |    | positive |    |
            |    |    +-----|----+------------+
            |    |    |     |    |            |
            |    +----+-----+    |            |
            |         |          |            |
            +---------+----------+            |
                      |                       |
                      |        gt bbox        |
                      |                       |
                      |             +---------+----------+
                      |             |         |          |
                      |             |    +----+-----+    |
                      |             |    |    |     |    |
                      +-------------|--- +----+     |    |
                                    |    | positive |    |
                                    |    +----------+    |
                                    |      negative      |
                                    +--------------------+

         The random noise is added to the top-left and down-right point
         positions, hence, normalized (x, y, x, y) format of bboxes are
         required. The noisy bboxes of positive queries have the points
         both within the inner square, while those of negative queries
         have the points both between the inner and outer squares.

        Besides, the length of outer square is twice as long as that of
        the inner square, i.e., self.box_noise_scale * w_or_h / 2.
        NOTE The noise is added to all the bboxes. Moreover, there is still
        unconsidered case when one point is within the positive square and
        the others is between the inner and outer squares.

        Args:
            gt_bboxes (Tensor): The concatenated gt bboxes of all samples
                in the batch, has shape (num_target_total, 4) with the last
                dimension arranged as (cx, cy, w, h) where
                `num_target_total = sum(num_target_list)`.
            num_groups (int): The number of denoising query groups.

        Returns:
            Tensor: The output noisy bboxes, which are embedded by normalized
            (cx, cy, w, h) format bboxes going through inverse_sigmoid, has
            shape (num_noisy_targets, 4) with the last dimension arranged as
            (cx, cy, w, h), where
            `num_noisy_targets = num_target_total * num_groups * 2`.
        """
        assert self.box_noise_scale > 0
        device = gt_bboxes.device

        # expand gt_bboxes as groups
        gt_bboxes_expand = gt_bboxes.repeat(2 * num_groups, 1)  # xyxy

        # obtain index of negative queries in gt_bboxes_expand
        positive_idx = torch.arange(
            len(gt_bboxes), dtype=torch.long, device=device)
        positive_idx = positive_idx.unsqueeze(0).repeat(num_groups, 1)
        positive_idx += 2 * len(gt_bboxes) * torch.arange(
            num_groups, dtype=torch.long, device=device)[:, None]
        positive_idx = positive_idx.flatten()
        negative_idx = positive_idx + len(gt_bboxes)

        # determine the sign of each element in the random part of the added
        # noise to be positive or negative randomly.
        rand_sign = torch.randint_like(
            gt_bboxes_expand, low=0, high=2,
            dtype=torch.float32) * 2.0 - 1.0  # [low, high), 1 or -1, randomly

        # calculate the random part of the added noise
        rand_part = torch.rand_like(gt_bboxes_expand)  # [0, 1)
        rand_part[negative_idx] += 1.0  # pos: [0, 1); neg: [1, 2)
        rand_part *= rand_sign  # pos: (-1, 1); neg: (-2, -1] U [1, 2)

        # add noise to the bboxes
        bboxes_whwh = bbox_xyxy_to_cxcywh(gt_bboxes_expand)[:, 2:].repeat(1, 2)
        noisy_bboxes_expand = gt_bboxes_expand + torch.mul(
            rand_part, bboxes_whwh) * self.box_noise_scale / 2  # xyxy
        noisy_bboxes_expand = noisy_bboxes_expand.clamp(min=0.0, max=1.0)
        noisy_bboxes_expand = bbox_xyxy_to_cxcywh(noisy_bboxes_expand)

        dn_bbox_query = inverse_sigmoid(noisy_bboxes_expand, eps=1e-3)
        return dn_bbox_query

    def collate_dn_queries(self, input_label_query: Tensor,
                           input_bbox_query: Tensor, batch_idx: Tensor,
                           batch_size: int, num_groups: int) -> Tuple[Tensor]:
        """Collate generated queries to obtain batched dn queries.

        The strategy for query collation is as follow:

        .. code:: text

                    input_queries (num_target_total, query_dim)
            P_A1 P_B1 P_B2 N_A1 N_B1 N_B2 P'A1 P'B1 P'B2 N'A1 N'B1 N'B2
              |________ group1 ________|    |________ group2 ________|
                                         |
                                         V
                      P_A1 Pad0 N_A1 Pad0 P'A1 Pad0 N'A1 Pad0
                      P_B1 P_B2 N_B1 N_B2 P'B1 P'B2 N'B1 N'B2
                       |____ group1 ____| |____ group2 ____|
             batched_queries (batch_size, max_num_target, query_dim)

            where query_dim is 4 for bbox and self.embed_dims for label.
            Notation: _-group 1; '-group 2;
                      A-Sample1(has 1 target); B-sample2(has 2 targets)

        Args:
            input_label_query (Tensor): The generated label queries of all
                targets, has shape (num_target_total, embed_dims) where
                `num_target_total = sum(num_target_list)`.
            input_bbox_query (Tensor): The generated bbox queries of all
                targets, has shape (num_target_total, 4) with the last
                dimension arranged as (cx, cy, w, h).
            batch_idx (Tensor): The batch index of the corresponding sample
                for each target, has shape (num_target_total).
            batch_size (int): The size of the input batch.
            num_groups (int): The number of denoising query groups.

        Returns:
            tuple[Tensor]: Output batched label and bbox queries.
            - batched_label_query (Tensor): The output batched label queries,
              has shape (batch_size, max_num_target, embed_dims).
            - batched_bbox_query (Tensor): The output batched bbox queries,
              has shape (batch_size, max_num_target, 4) with the last dimension
              arranged as (cx, cy, w, h).
        """
        device = input_label_query.device
        num_target_list = [
            torch.sum(batch_idx == idx) for idx in range(batch_size)
        ]
        max_num_target = max(num_target_list)
        num_denoising_queries = int(max_num_target * 2 * num_groups)

        map_query_index = torch.cat([
            torch.arange(num_target, device=device)
            for num_target in num_target_list
        ])
        map_query_index = torch.cat([
            map_query_index + max_num_target * i for i in range(2 * num_groups)
        ]).long()
        batch_idx_expand = batch_idx.repeat(2 * num_groups, 1).view(-1)
        mapper = (batch_idx_expand, map_query_index)

        batched_label_query = torch.zeros(
            batch_size, num_denoising_queries, self.embed_dims, device=device)
        batched_bbox_query = torch.zeros(
            batch_size, num_denoising_queries, 4, device=device)

        batched_label_query[mapper] = input_label_query
        batched_bbox_query[mapper] = input_bbox_query
        return batched_label_query, batched_bbox_query

    def generate_dn_mask(self, max_num_target: int, num_groups: int,
                         device: Union[torch.device, str]) -> Tensor:
        """Generate attention mask to prevent information leakage from
        different denoising groups and matching parts.

        .. code:: text

                        0 0 0 0 1 1 1 1 0 0 0 0 0
                        0 0 0 0 1 1 1 1 0 0 0 0 0
                        0 0 0 0 1 1 1 1 0 0 0 0 0
                        0 0 0 0 1 1 1 1 0 0 0 0 0
                        1 1 1 1 0 0 0 0 0 0 0 0 0
                        1 1 1 1 0 0 0 0 0 0 0 0 0
                        1 1 1 1 0 0 0 0 0 0 0 0 0
                        1 1 1 1 0 0 0 0 0 0 0 0 0
                        1 1 1 1 1 1 1 1 0 0 0 0 0
                        1 1 1 1 1 1 1 1 0 0 0 0 0
                        1 1 1 1 1 1 1 1 0 0 0 0 0
                        1 1 1 1 1 1 1 1 0 0 0 0 0
                        1 1 1 1 1 1 1 1 0 0 0 0 0
         max_num_target |_|           |_________| num_matching_queries
                        |_____________| num_denoising_queries

               1 -> True  (Masked), means 'can not see'.
               0 -> False (UnMasked), means 'can see'.

        Args:
            max_num_target (int): The max target number of the input batch
                samples.
            num_groups (int): The number of denoising query groups.
            device (obj:`device` or str): The device of generated mask.

        Returns:
            Tensor: The attention mask to prevent information leakage from
            different denoising groups and matching parts, will be used as
            `self_attn_mask` of the `decoder`, has shape (num_queries_total,
            num_queries_total), where `num_queries_total` is the sum of
            `num_denoising_queries` and `num_matching_queries`.
        """
        num_denoising_queries = int(max_num_target * 2 * num_groups)
        num_queries_total = num_denoising_queries + self.num_matching_queries
        attn_mask = torch.zeros(
            num_queries_total,
            num_queries_total,
            device=device,
            dtype=torch.bool)
        # Make the matching part cannot see the denoising groups
        attn_mask[num_denoising_queries:, :num_denoising_queries] = True
        # Make the denoising groups cannot see each other
        for i in range(num_groups):
            # Mask rows of one group per step.
            row_scope = slice(max_num_target * 2 * i,
                              max_num_target * 2 * (i + 1))
            left_scope = slice(max_num_target * 2 * i)
            right_scope = slice(max_num_target * 2 * (i + 1),
                                num_denoising_queries)
            attn_mask[row_scope, right_scope] = True
            attn_mask[row_scope, left_scope] = True
        return attn_mask