File size: 11,683 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List

import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN
from mmengine.model import ModuleList
from torch import Tensor

from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer,
                          DetrTransformerEncoder, DetrTransformerEncoderLayer)
from .utils import (MLP, ConditionalAttention, coordinate_to_encoding,
                    inverse_sigmoid)


class DABDetrTransformerDecoderLayer(DetrTransformerDecoderLayer):
    """Implements decoder layer in DAB-DETR transformer."""

    def _init_layers(self):
        """Initialize self-attention, cross-attention, FFN, normalization and
        others."""
        self.self_attn = ConditionalAttention(**self.self_attn_cfg)
        self.cross_attn = ConditionalAttention(**self.cross_attn_cfg)
        self.embed_dims = self.self_attn.embed_dims
        self.ffn = FFN(**self.ffn_cfg)
        norms_list = [
            build_norm_layer(self.norm_cfg, self.embed_dims)[1]
            for _ in range(3)
        ]
        self.norms = ModuleList(norms_list)
        self.keep_query_pos = self.cross_attn.keep_query_pos

    def forward(self,
                query: Tensor,
                key: Tensor,
                query_pos: Tensor,
                key_pos: Tensor,
                ref_sine_embed: Tensor = None,
                self_attn_masks: Tensor = None,
                cross_attn_masks: Tensor = None,
                key_padding_mask: Tensor = None,
                is_first: bool = False,
                **kwargs) -> Tensor:
        """
        Args:
            query (Tensor): The input query with shape [bs, num_queries,
                dim].
            key (Tensor): The key tensor with shape [bs, num_keys,
                dim].
            query_pos (Tensor): The positional encoding for query in self
                attention, with the same shape as `x`.
            key_pos (Tensor): The positional encoding for `key`, with the
                same shape as `key`.
            ref_sine_embed (Tensor): The positional encoding for query in
                cross attention, with the same shape as `x`.
                Defaults to None.
            self_attn_masks (Tensor): ByteTensor mask with shape [num_queries,
                num_keys]. Same in `nn.MultiheadAttention.forward`.
                Defaults to None.
            cross_attn_masks (Tensor): ByteTensor mask with shape [num_queries,
                num_keys]. Same in `nn.MultiheadAttention.forward`.
                Defaults to None.
            key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys].
                Defaults to None.
            is_first (bool): A indicator to tell whether the current layer
                is the first layer of the decoder.
                Defaults to False.

        Returns:
            Tensor: forwarded results with shape
            [bs, num_queries, dim].
        """

        query = self.self_attn(
            query=query,
            key=query,
            query_pos=query_pos,
            key_pos=query_pos,
            attn_mask=self_attn_masks,
            **kwargs)
        query = self.norms[0](query)
        query = self.cross_attn(
            query=query,
            key=key,
            query_pos=query_pos,
            key_pos=key_pos,
            ref_sine_embed=ref_sine_embed,
            attn_mask=cross_attn_masks,
            key_padding_mask=key_padding_mask,
            is_first=is_first,
            **kwargs)
        query = self.norms[1](query)
        query = self.ffn(query)
        query = self.norms[2](query)

        return query


class DABDetrTransformerDecoder(DetrTransformerDecoder):
    """Decoder of DAB-DETR.

    Args:
        query_dim (int): The last dimension of query pos,
            4 for anchor format, 2 for point format.
            Defaults to 4.
        query_scale_type (str): Type of transformation applied
            to content query. Defaults to `cond_elewise`.
        with_modulated_hw_attn (bool): Whether to inject h&w info
            during cross conditional attention. Defaults to True.
    """

    def __init__(self,
                 *args,
                 query_dim: int = 4,
                 query_scale_type: str = 'cond_elewise',
                 with_modulated_hw_attn: bool = True,
                 **kwargs):

        self.query_dim = query_dim
        self.query_scale_type = query_scale_type
        self.with_modulated_hw_attn = with_modulated_hw_attn

        super().__init__(*args, **kwargs)

    def _init_layers(self):
        """Initialize decoder layers and other layers."""
        assert self.query_dim in [2, 4], \
            f'{"dab-detr only supports anchor prior or reference point prior"}'
        assert self.query_scale_type in [
            'cond_elewise', 'cond_scalar', 'fix_elewise'
        ]

        self.layers = ModuleList([
            DABDetrTransformerDecoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])

        embed_dims = self.layers[0].embed_dims
        self.embed_dims = embed_dims

        self.post_norm = build_norm_layer(self.post_norm_cfg, embed_dims)[1]
        if self.query_scale_type == 'cond_elewise':
            self.query_scale = MLP(embed_dims, embed_dims, embed_dims, 2)
        elif self.query_scale_type == 'cond_scalar':
            self.query_scale = MLP(embed_dims, embed_dims, 1, 2)
        elif self.query_scale_type == 'fix_elewise':
            self.query_scale = nn.Embedding(self.num_layers, embed_dims)
        else:
            raise NotImplementedError('Unknown query_scale_type: {}'.format(
                self.query_scale_type))

        self.ref_point_head = MLP(self.query_dim // 2 * embed_dims, embed_dims,
                                  embed_dims, 2)

        if self.with_modulated_hw_attn and self.query_dim == 4:
            self.ref_anchor_head = MLP(embed_dims, embed_dims, 2, 2)

        self.keep_query_pos = self.layers[0].keep_query_pos
        if not self.keep_query_pos:
            for layer_id in range(self.num_layers - 1):
                self.layers[layer_id + 1].cross_attn.qpos_proj = None

    def forward(self,
                query: Tensor,
                key: Tensor,
                query_pos: Tensor,
                key_pos: Tensor,
                reg_branches: nn.Module,
                key_padding_mask: Tensor = None,
                **kwargs) -> List[Tensor]:
        """Forward function of decoder.

        Args:
            query (Tensor): The input query with shape (bs, num_queries, dim).
            key (Tensor): The input key with shape (bs, num_keys, dim).
            query_pos (Tensor): The positional encoding for `query`, with the
                same shape as `query`.
            key_pos (Tensor): The positional encoding for `key`, with the
                same shape as `key`.
            reg_branches (nn.Module): The regression branch for dynamically
                updating references in each layer.
            key_padding_mask (Tensor): ByteTensor with shape (bs, num_keys).
                Defaults to `None`.

        Returns:
            List[Tensor]: forwarded results with shape (num_decoder_layers,
            bs, num_queries, dim) if `return_intermediate` is True, otherwise
            with shape (1, bs, num_queries, dim). references with shape
            (num_decoder_layers, bs, num_queries, 2/4).
        """
        output = query
        unsigmoid_references = query_pos

        reference_points = unsigmoid_references.sigmoid()
        intermediate_reference_points = [reference_points]

        intermediate = []
        for layer_id, layer in enumerate(self.layers):
            obj_center = reference_points[..., :self.query_dim]
            ref_sine_embed = coordinate_to_encoding(
                coord_tensor=obj_center, num_feats=self.embed_dims // 2)
            query_pos = self.ref_point_head(
                ref_sine_embed)  # [bs, nq, 2c] -> [bs, nq, c]
            # For the first decoder layer, do not apply transformation
            if self.query_scale_type != 'fix_elewise':
                if layer_id == 0:
                    pos_transformation = 1
                else:
                    pos_transformation = self.query_scale(output)
            else:
                pos_transformation = self.query_scale.weight[layer_id]
            # apply transformation
            ref_sine_embed = ref_sine_embed[
                ..., :self.embed_dims] * pos_transformation
            # modulated height and weight attention
            if self.with_modulated_hw_attn:
                assert obj_center.size(-1) == 4
                ref_hw = self.ref_anchor_head(output).sigmoid()
                ref_sine_embed[..., self.embed_dims // 2:] *= \
                    (ref_hw[..., 0] / obj_center[..., 2]).unsqueeze(-1)
                ref_sine_embed[..., : self.embed_dims // 2] *= \
                    (ref_hw[..., 1] / obj_center[..., 3]).unsqueeze(-1)

            output = layer(
                output,
                key,
                query_pos=query_pos,
                ref_sine_embed=ref_sine_embed,
                key_pos=key_pos,
                key_padding_mask=key_padding_mask,
                is_first=(layer_id == 0),
                **kwargs)
            # iter update
            tmp_reg_preds = reg_branches(output)
            tmp_reg_preds[..., :self.query_dim] += inverse_sigmoid(
                reference_points)
            new_reference_points = tmp_reg_preds[
                ..., :self.query_dim].sigmoid()
            if layer_id != self.num_layers - 1:
                intermediate_reference_points.append(new_reference_points)
            reference_points = new_reference_points.detach()

            if self.return_intermediate:
                intermediate.append(self.post_norm(output))

        output = self.post_norm(output)

        if self.return_intermediate:
            return [
                torch.stack(intermediate),
                torch.stack(intermediate_reference_points),
            ]
        else:
            return [
                output.unsqueeze(0),
                torch.stack(intermediate_reference_points)
            ]


class DABDetrTransformerEncoder(DetrTransformerEncoder):
    """Encoder of DAB-DETR."""

    def _init_layers(self):
        """Initialize encoder layers."""
        self.layers = ModuleList([
            DetrTransformerEncoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])
        embed_dims = self.layers[0].embed_dims
        self.embed_dims = embed_dims
        self.query_scale = MLP(embed_dims, embed_dims, embed_dims, 2)

    def forward(self, query: Tensor, query_pos: Tensor,
                key_padding_mask: Tensor, **kwargs):
        """Forward function of encoder.

        Args:
            query (Tensor): Input queries of encoder, has shape
                (bs, num_queries, dim).
            query_pos (Tensor): The positional embeddings of the queries, has
                shape (bs, num_feat_points, dim).
            key_padding_mask (Tensor): ByteTensor, the key padding mask
                of the queries, has shape (bs, num_feat_points).

        Returns:
            Tensor: With shape (num_queries, bs, dim).
        """

        for layer in self.layers:
            pos_scales = self.query_scale(query)
            query = layer(
                query,
                query_pos=query_pos * pos_scales,
                key_padding_mask=key_padding_mask,
                **kwargs)

        return query