File size: 10,605 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, ConvModule
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention
from mmengine.model import (BaseModule, ModuleList, caffe2_xavier_init,
                            normal_init, xavier_init)
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.utils import ConfigType, OptMultiConfig
from ..task_modules.prior_generators import MlvlPointGenerator
from .positional_encoding import SinePositionalEncoding
from .transformer import Mask2FormerTransformerEncoder


@MODELS.register_module()
class MSDeformAttnPixelDecoder(BaseModule):
    """Pixel decoder with multi-scale deformable attention.

    Args:
        in_channels (list[int] | tuple[int]): Number of channels in the
            input feature maps.
        strides (list[int] | tuple[int]): Output strides of feature from
            backbone.
        feat_channels (int): Number of channels for feature.
        out_channels (int): Number of channels for output.
        num_outs (int): Number of output scales.
        norm_cfg (:obj:`ConfigDict` or dict): Config for normalization.
            Defaults to dict(type='GN', num_groups=32).
        act_cfg (:obj:`ConfigDict` or dict): Config for activation.
            Defaults to dict(type='ReLU').
        encoder (:obj:`ConfigDict` or dict): Config for transformer
            encoder. Defaults to None.
        positional_encoding (:obj:`ConfigDict` or dict): Config for
            transformer encoder position encoding. Defaults to
            dict(num_feats=128, normalize=True).
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], optional): Initialization config dict. Defaults to None.
    """

    def __init__(self,
                 in_channels: Union[List[int],
                                    Tuple[int]] = [256, 512, 1024, 2048],
                 strides: Union[List[int], Tuple[int]] = [4, 8, 16, 32],
                 feat_channels: int = 256,
                 out_channels: int = 256,
                 num_outs: int = 3,
                 norm_cfg: ConfigType = dict(type='GN', num_groups=32),
                 act_cfg: ConfigType = dict(type='ReLU'),
                 encoder: ConfigType = None,
                 positional_encoding: ConfigType = dict(
                     num_feats=128, normalize=True),
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        self.strides = strides
        self.num_input_levels = len(in_channels)
        self.num_encoder_levels = \
            encoder.layer_cfg.self_attn_cfg.num_levels
        assert self.num_encoder_levels >= 1, \
            'num_levels in attn_cfgs must be at least one'
        input_conv_list = []
        # from top to down (low to high resolution)
        for i in range(self.num_input_levels - 1,
                       self.num_input_levels - self.num_encoder_levels - 1,
                       -1):
            input_conv = ConvModule(
                in_channels[i],
                feat_channels,
                kernel_size=1,
                norm_cfg=norm_cfg,
                act_cfg=None,
                bias=True)
            input_conv_list.append(input_conv)
        self.input_convs = ModuleList(input_conv_list)

        self.encoder = Mask2FormerTransformerEncoder(**encoder)
        self.postional_encoding = SinePositionalEncoding(**positional_encoding)
        # high resolution to low resolution
        self.level_encoding = nn.Embedding(self.num_encoder_levels,
                                           feat_channels)

        # fpn-like structure
        self.lateral_convs = ModuleList()
        self.output_convs = ModuleList()
        self.use_bias = norm_cfg is None
        # from top to down (low to high resolution)
        # fpn for the rest features that didn't pass in encoder
        for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1,
                       -1):
            lateral_conv = ConvModule(
                in_channels[i],
                feat_channels,
                kernel_size=1,
                bias=self.use_bias,
                norm_cfg=norm_cfg,
                act_cfg=None)
            output_conv = ConvModule(
                feat_channels,
                feat_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=self.use_bias,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg)
            self.lateral_convs.append(lateral_conv)
            self.output_convs.append(output_conv)

        self.mask_feature = Conv2d(
            feat_channels, out_channels, kernel_size=1, stride=1, padding=0)

        self.num_outs = num_outs
        self.point_generator = MlvlPointGenerator(strides)

    def init_weights(self) -> None:
        """Initialize weights."""
        for i in range(0, self.num_encoder_levels):
            xavier_init(
                self.input_convs[i].conv,
                gain=1,
                bias=0,
                distribution='uniform')

        for i in range(0, self.num_input_levels - self.num_encoder_levels):
            caffe2_xavier_init(self.lateral_convs[i].conv, bias=0)
            caffe2_xavier_init(self.output_convs[i].conv, bias=0)

        caffe2_xavier_init(self.mask_feature, bias=0)

        normal_init(self.level_encoding, mean=0, std=1)
        for p in self.encoder.parameters():
            if p.dim() > 1:
                nn.init.xavier_normal_(p)

        # init_weights defined in MultiScaleDeformableAttention
        for m in self.encoder.layers.modules():
            if isinstance(m, MultiScaleDeformableAttention):
                m.init_weights()

    def forward(self, feats: List[Tensor]) -> Tuple[Tensor, Tensor]:
        """
        Args:
            feats (list[Tensor]): Feature maps of each level. Each has
                shape of (batch_size, c, h, w).

        Returns:
            tuple: A tuple containing the following:

                - mask_feature (Tensor): shape (batch_size, c, h, w).
                - multi_scale_features (list[Tensor]): Multi scale \
                        features, each in shape (batch_size, c, h, w).
        """
        # generate padding mask for each level, for each image
        batch_size = feats[0].shape[0]
        encoder_input_list = []
        padding_mask_list = []
        level_positional_encoding_list = []
        spatial_shapes = []
        reference_points_list = []
        for i in range(self.num_encoder_levels):
            level_idx = self.num_input_levels - i - 1
            feat = feats[level_idx]
            feat_projected = self.input_convs[i](feat)
            feat_hw = torch._shape_as_tensor(feat)[2:].to(feat.device)

            # no padding
            padding_mask_resized = feat.new_zeros(
                (batch_size, ) + feat.shape[-2:], dtype=torch.bool)
            pos_embed = self.postional_encoding(padding_mask_resized)
            level_embed = self.level_encoding.weight[i]
            level_pos_embed = level_embed.view(1, -1, 1, 1) + pos_embed
            # (h_i * w_i, 2)
            reference_points = self.point_generator.single_level_grid_priors(
                feat.shape[-2:], level_idx, device=feat.device)
            # normalize
            feat_wh = feat_hw.unsqueeze(0).flip(dims=[0, 1])
            factor = feat_wh * self.strides[level_idx]
            reference_points = reference_points / factor

            # shape (batch_size, c, h_i, w_i) -> (h_i * w_i, batch_size, c)
            feat_projected = feat_projected.flatten(2).permute(0, 2, 1)
            level_pos_embed = level_pos_embed.flatten(2).permute(0, 2, 1)
            padding_mask_resized = padding_mask_resized.flatten(1)

            encoder_input_list.append(feat_projected)
            padding_mask_list.append(padding_mask_resized)
            level_positional_encoding_list.append(level_pos_embed)
            spatial_shapes.append(feat_hw)
            reference_points_list.append(reference_points)
        # shape (batch_size, total_num_queries),
        # total_num_queries=sum([., h_i * w_i,.])
        padding_masks = torch.cat(padding_mask_list, dim=1)
        # shape (total_num_queries, batch_size, c)
        encoder_inputs = torch.cat(encoder_input_list, dim=1)
        level_positional_encodings = torch.cat(
            level_positional_encoding_list, dim=1)
        # shape (num_encoder_levels, 2), from low
        # resolution to high resolution
        num_queries_per_level = [e[0] * e[1] for e in spatial_shapes]
        spatial_shapes = torch.cat(spatial_shapes).view(-1, 2)
        # shape (0, h_0*w_0, h_0*w_0+h_1*w_1, ...)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        reference_points = torch.cat(reference_points_list, dim=0)
        reference_points = reference_points[None, :, None].repeat(
            batch_size, 1, self.num_encoder_levels, 1)
        valid_radios = reference_points.new_ones(
            (batch_size, self.num_encoder_levels, 2))
        # shape (num_total_queries, batch_size, c)
        memory = self.encoder(
            query=encoder_inputs,
            query_pos=level_positional_encodings,
            key_padding_mask=padding_masks,
            spatial_shapes=spatial_shapes,
            reference_points=reference_points,
            level_start_index=level_start_index,
            valid_ratios=valid_radios)
        # (batch_size, c, num_total_queries)
        memory = memory.permute(0, 2, 1)

        # from low resolution to high resolution
        outs = torch.split(memory, num_queries_per_level, dim=-1)
        outs = [
            x.reshape(batch_size, -1, spatial_shapes[i][0],
                      spatial_shapes[i][1]) for i, x in enumerate(outs)
        ]

        for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1,
                       -1):
            x = feats[i]
            cur_feat = self.lateral_convs[i](x)
            y = cur_feat + F.interpolate(
                outs[-1],
                size=cur_feat.shape[-2:],
                mode='bilinear',
                align_corners=False)
            y = self.output_convs[i](y)
            outs.append(y)
        multi_scale_features = outs[:self.num_outs]

        mask_feature = self.mask_feature(outs[-1])
        return mask_feature, multi_scale_features