File size: 11,647 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch import Tensor

from mmdet.models.utils import (filter_gt_instances, rename_loss_dict,
                                reweight_loss_dict)
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_project
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from .base import BaseDetector


@MODELS.register_module()
class SemiBaseDetector(BaseDetector):
    """Base class for semi-supervised detectors.

    Semi-supervised detectors typically consisting of a teacher model
    updated by exponential moving average and a student model updated
    by gradient descent.

    Args:
        detector (:obj:`ConfigDict` or dict): The detector config.
        semi_train_cfg (:obj:`ConfigDict` or dict, optional):
            The semi-supervised training config.
        semi_test_cfg (:obj:`ConfigDict` or dict, optional):
            The semi-supervised testing config.
        data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of
            :class:`DetDataPreprocessor` to process the input data.
            Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 detector: ConfigType,
                 semi_train_cfg: OptConfigType = None,
                 semi_test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)
        self.student = MODELS.build(detector)
        self.teacher = MODELS.build(detector)
        self.semi_train_cfg = semi_train_cfg
        self.semi_test_cfg = semi_test_cfg
        if self.semi_train_cfg.get('freeze_teacher', True) is True:
            self.freeze(self.teacher)

    @staticmethod
    def freeze(model: nn.Module):
        """Freeze the model."""
        model.eval()
        for param in model.parameters():
            param.requires_grad = False

    def loss(self, multi_batch_inputs: Dict[str, Tensor],
             multi_batch_data_samples: Dict[str, SampleList]) -> dict:
        """Calculate losses from multi-branch inputs and data samples.

        Args:
            multi_batch_inputs (Dict[str, Tensor]): The dict of multi-branch
                input images, each value with shape (N, C, H, W).
                Each value should usually be mean centered and std scaled.
            multi_batch_data_samples (Dict[str, List[:obj:`DetDataSample`]]):
                The dict of multi-branch data samples.

        Returns:
            dict: A dictionary of loss components
        """
        losses = dict()
        losses.update(**self.loss_by_gt_instances(
            multi_batch_inputs['sup'], multi_batch_data_samples['sup']))

        origin_pseudo_data_samples, batch_info = self.get_pseudo_instances(
            multi_batch_inputs['unsup_teacher'],
            multi_batch_data_samples['unsup_teacher'])
        multi_batch_data_samples[
            'unsup_student'] = self.project_pseudo_instances(
                origin_pseudo_data_samples,
                multi_batch_data_samples['unsup_student'])
        losses.update(**self.loss_by_pseudo_instances(
            multi_batch_inputs['unsup_student'],
            multi_batch_data_samples['unsup_student'], batch_info))
        return losses

    def loss_by_gt_instances(self, batch_inputs: Tensor,
                             batch_data_samples: SampleList) -> dict:
        """Calculate losses from a batch of inputs and ground-truth data
        samples.

        Args:
            batch_inputs (Tensor): Input images of shape (N, C, H, W).
                These should usually be mean centered and std scaled.
            batch_data_samples (List[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components
        """

        losses = self.student.loss(batch_inputs, batch_data_samples)
        sup_weight = self.semi_train_cfg.get('sup_weight', 1.)
        return rename_loss_dict('sup_', reweight_loss_dict(losses, sup_weight))

    def loss_by_pseudo_instances(self,
                                 batch_inputs: Tensor,
                                 batch_data_samples: SampleList,
                                 batch_info: Optional[dict] = None) -> dict:
        """Calculate losses from a batch of inputs and pseudo data samples.

        Args:
            batch_inputs (Tensor): Input images of shape (N, C, H, W).
                These should usually be mean centered and std scaled.
            batch_data_samples (List[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`,
                which are `pseudo_instance` or `pseudo_panoptic_seg`
                or `pseudo_sem_seg` in fact.
            batch_info (dict): Batch information of teacher model
                forward propagation process. Defaults to None.

        Returns:
            dict: A dictionary of loss components
        """
        batch_data_samples = filter_gt_instances(
            batch_data_samples, score_thr=self.semi_train_cfg.cls_pseudo_thr)
        losses = self.student.loss(batch_inputs, batch_data_samples)
        pseudo_instances_num = sum([
            len(data_samples.gt_instances)
            for data_samples in batch_data_samples
        ])
        unsup_weight = self.semi_train_cfg.get(
            'unsup_weight', 1.) if pseudo_instances_num > 0 else 0.
        return rename_loss_dict('unsup_',
                                reweight_loss_dict(losses, unsup_weight))

    @torch.no_grad()
    def get_pseudo_instances(
            self, batch_inputs: Tensor, batch_data_samples: SampleList
    ) -> Tuple[SampleList, Optional[dict]]:
        """Get pseudo instances from teacher model."""
        self.teacher.eval()
        results_list = self.teacher.predict(
            batch_inputs, batch_data_samples, rescale=False)
        batch_info = {}
        for data_samples, results in zip(batch_data_samples, results_list):
            data_samples.gt_instances = results.pred_instances
            data_samples.gt_instances.bboxes = bbox_project(
                data_samples.gt_instances.bboxes,
                torch.from_numpy(data_samples.homography_matrix).inverse().to(
                    self.data_preprocessor.device), data_samples.ori_shape)
        return batch_data_samples, batch_info

    def project_pseudo_instances(self, batch_pseudo_instances: SampleList,
                                 batch_data_samples: SampleList) -> SampleList:
        """Project pseudo instances."""
        for pseudo_instances, data_samples in zip(batch_pseudo_instances,
                                                  batch_data_samples):
            data_samples.gt_instances = copy.deepcopy(
                pseudo_instances.gt_instances)
            data_samples.gt_instances.bboxes = bbox_project(
                data_samples.gt_instances.bboxes,
                torch.tensor(data_samples.homography_matrix).to(
                    self.data_preprocessor.device), data_samples.img_shape)
        wh_thr = self.semi_train_cfg.get('min_pseudo_bbox_wh', (1e-2, 1e-2))
        return filter_gt_instances(batch_data_samples, wh_thr=wh_thr)

    def predict(self, batch_inputs: Tensor,
                batch_data_samples: SampleList) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.

        Args:
            batch_inputs (Tensor): Inputs with shape (N, C, H, W).
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool): Whether to rescale the results.
                Defaults to True.

        Returns:
            list[:obj:`DetDataSample`]: Return the detection results of the
            input images. The returns value is DetDataSample,
            which usually contain 'pred_instances'. And the
            ``pred_instances`` usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                    (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                    (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                    the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """
        if self.semi_test_cfg.get('predict_on', 'teacher') == 'teacher':
            return self.teacher(
                batch_inputs, batch_data_samples, mode='predict')
        else:
            return self.student(
                batch_inputs, batch_data_samples, mode='predict')

    def _forward(self, batch_inputs: Tensor,
                 batch_data_samples: SampleList) -> SampleList:
        """Network forward process. Usually includes backbone, neck and head
        forward without any post-processing.

        Args:
            batch_inputs (Tensor): Inputs with shape (N, C, H, W).

        Returns:
            tuple: A tuple of features from ``rpn_head`` and ``roi_head``
            forward.
        """
        if self.semi_test_cfg.get('forward_on', 'teacher') == 'teacher':
            return self.teacher(
                batch_inputs, batch_data_samples, mode='tensor')
        else:
            return self.student(
                batch_inputs, batch_data_samples, mode='tensor')

    def extract_feat(self, batch_inputs: Tensor) -> Tuple[Tensor]:
        """Extract features.

        Args:
            batch_inputs (Tensor): Image tensor with shape (N, C, H ,W).

        Returns:
            tuple[Tensor]: Multi-level features that may have
            different resolutions.
        """
        if self.semi_test_cfg.get('extract_feat_on', 'teacher') == 'teacher':
            return self.teacher.extract_feat(batch_inputs)
        else:
            return self.student.extract_feat(batch_inputs)

    def _load_from_state_dict(self, state_dict: dict, prefix: str,
                              local_metadata: dict, strict: bool,
                              missing_keys: Union[List[str], str],
                              unexpected_keys: Union[List[str], str],
                              error_msgs: Union[List[str], str]) -> None:
        """Add teacher and student prefixes to model parameter names."""
        if not any([
                'student' in key or 'teacher' in key
                for key in state_dict.keys()
        ]):
            keys = list(state_dict.keys())
            state_dict.update({'teacher.' + k: state_dict[k] for k in keys})
            state_dict.update({'student.' + k: state_dict[k] for k in keys})
            for k in keys:
                state_dict.pop(k)
        return super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )