Spaces:
Runtime error
Runtime error
File size: 16,869 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, Tuple, Union
import torch
import torch.nn as nn
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import OptSampleList, SampleList
from ..layers import SinePositionalEncoding
from ..layers.transformer.grounding_dino_layers import (
GroundingDinoTransformerDecoder, GroundingDinoTransformerEncoder)
from .dino import DINO
from .glip import (create_positive_map, create_positive_map_label_to_token,
run_ner)
@MODELS.register_module()
class GroundingDINO(DINO):
"""Implementation of `Grounding DINO: Marrying DINO with Grounded Pre-
Training for Open-Set Object Detection.
<https://arxiv.org/abs/2303.05499>`_
Code is modified from the `official github repo
<https://github.com/IDEA-Research/GroundingDINO>`_.
"""
def __init__(self, language_model, *args, **kwargs) -> None:
self.language_model_cfg = language_model
self._special_tokens = '. '
super().__init__(*args, **kwargs)
def _init_layers(self) -> None:
"""Initialize layers except for backbone, neck and bbox_head."""
self.positional_encoding = SinePositionalEncoding(
**self.positional_encoding)
self.encoder = GroundingDinoTransformerEncoder(**self.encoder)
self.decoder = GroundingDinoTransformerDecoder(**self.decoder)
self.embed_dims = self.encoder.embed_dims
self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims)
num_feats = self.positional_encoding.num_feats
assert num_feats * 2 == self.embed_dims, \
f'embed_dims should be exactly 2 times of num_feats. ' \
f'Found {self.embed_dims} and {num_feats}.'
self.level_embed = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
# text modules
self.language_model = MODELS.build(self.language_model_cfg)
self.text_feat_map = nn.Linear(
self.language_model.language_backbone.body.language_dim,
self.embed_dims,
bias=True)
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super().init_weights()
nn.init.constant_(self.text_feat_map.bias.data, 0)
nn.init.xavier_uniform_(self.text_feat_map.weight.data)
def get_tokens_and_prompts(
self,
original_caption: Union[str, list, tuple],
custom_entities: bool = False) -> Tuple[dict, str, list]:
"""Get the tokens positive and prompts for the caption."""
if isinstance(original_caption, (list, tuple)) or custom_entities:
if custom_entities and isinstance(original_caption, str):
original_caption = original_caption.strip(self._special_tokens)
original_caption = original_caption.split(self._special_tokens)
original_caption = list(
filter(lambda x: len(x) > 0, original_caption))
caption_string = ''
tokens_positive = []
for idx, word in enumerate(original_caption):
tokens_positive.append(
[[len(caption_string),
len(caption_string) + len(word)]])
caption_string += word
caption_string += self._special_tokens
# NOTE: Tokenizer in Grounding DINO is different from
# that in GLIP. The tokenizer in GLIP will pad the
# caption_string to max_length, while the tokenizer
# in Grounding DINO will not.
tokenized = self.language_model.tokenizer(
[caption_string],
padding='max_length'
if self.language_model.pad_to_max else 'longest',
return_tensors='pt')
entities = original_caption
else:
if not original_caption.endswith('.'):
original_caption = original_caption + self._special_tokens
# NOTE: Tokenizer in Grounding DINO is different from
# that in GLIP. The tokenizer in GLIP will pad the
# caption_string to max_length, while the tokenizer
# in Grounding DINO will not.
tokenized = self.language_model.tokenizer(
[original_caption],
padding='max_length'
if self.language_model.pad_to_max else 'longest',
return_tensors='pt')
tokens_positive, noun_phrases = run_ner(original_caption)
entities = noun_phrases
caption_string = original_caption
return tokenized, caption_string, tokens_positive, entities
def get_positive_map(self, tokenized, tokens_positive):
positive_map = create_positive_map(tokenized, tokens_positive)
positive_map_label_to_token = create_positive_map_label_to_token(
positive_map, plus=1)
return positive_map_label_to_token, positive_map
def get_tokens_positive_and_prompts(
self,
original_caption: Union[str, list, tuple],
custom_entities: bool = False) -> Tuple[dict, str, Tensor, list]:
"""Get the tokens positive and prompts for the caption.
Args:
original_caption (str): The original caption, e.g. 'bench . car .'
custom_entities (bool, optional): Whether to use custom entities.
If ``True``, the ``original_caption`` should be a list of
strings, each of which is a word. Defaults to False.
Returns:
Tuple[dict, str, dict, str]: The dict is a mapping from each entity
id, which is numbered from 1, to its positive token id.
The str represents the prompts.
"""
tokenized, caption_string, tokens_positive, entities = \
self.get_tokens_and_prompts(
original_caption, custom_entities)
positive_map_label_to_token, positive_map = self.get_positive_map(
tokenized, tokens_positive)
return positive_map_label_to_token, caption_string, \
positive_map, entities
def forward_transformer(
self,
img_feats: Tuple[Tensor],
text_dict: Dict,
batch_data_samples: OptSampleList = None,
) -> Dict:
encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer(
img_feats, batch_data_samples)
encoder_outputs_dict = self.forward_encoder(
**encoder_inputs_dict, text_dict=text_dict)
tmp_dec_in, head_inputs_dict = self.pre_decoder(
**encoder_outputs_dict, batch_data_samples=batch_data_samples)
decoder_inputs_dict.update(tmp_dec_in)
decoder_outputs_dict = self.forward_decoder(**decoder_inputs_dict)
head_inputs_dict.update(decoder_outputs_dict)
return head_inputs_dict
def forward_encoder(self, feat: Tensor, feat_mask: Tensor,
feat_pos: Tensor, spatial_shapes: Tensor,
level_start_index: Tensor, valid_ratios: Tensor,
text_dict: Dict) -> Dict:
text_token_mask = text_dict['text_token_mask']
memory, memory_text = self.encoder(
query=feat,
query_pos=feat_pos,
key_padding_mask=feat_mask, # for self_attn
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
# for text encoder
memory_text=text_dict['embedded'],
text_attention_mask=~text_token_mask,
position_ids=text_dict['position_ids'],
text_self_attention_masks=text_dict['masks'])
encoder_outputs_dict = dict(
memory=memory,
memory_mask=feat_mask,
spatial_shapes=spatial_shapes,
memory_text=memory_text,
text_token_mask=text_token_mask)
return encoder_outputs_dict
def pre_decoder(
self,
memory: Tensor,
memory_mask: Tensor,
spatial_shapes: Tensor,
memory_text: Tensor,
text_token_mask: Tensor,
batch_data_samples: OptSampleList = None,
) -> Tuple[Dict]:
bs, _, c = memory.shape
output_memory, output_proposals = self.gen_encoder_output_proposals(
memory, memory_mask, spatial_shapes)
enc_outputs_class = self.bbox_head.cls_branches[
self.decoder.num_layers](output_memory, memory_text,
text_token_mask)
cls_out_features = self.bbox_head.cls_branches[
self.decoder.num_layers].max_text_len
enc_outputs_coord_unact = self.bbox_head.reg_branches[
self.decoder.num_layers](output_memory) + output_proposals
# NOTE The DINO selects top-k proposals according to scores of
# multi-class classification, while DeformDETR, where the input
# is `enc_outputs_class[..., 0]` selects according to scores of
# binary classification.
topk_indices = torch.topk(
enc_outputs_class.max(-1)[0], k=self.num_queries, dim=1)[1]
topk_score = torch.gather(
enc_outputs_class, 1,
topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features))
topk_coords_unact = torch.gather(
enc_outputs_coord_unact, 1,
topk_indices.unsqueeze(-1).repeat(1, 1, 4))
topk_coords = topk_coords_unact.sigmoid()
topk_coords_unact = topk_coords_unact.detach()
query = self.query_embedding.weight[:, None, :]
query = query.repeat(1, bs, 1).transpose(0, 1)
if self.training:
dn_label_query, dn_bbox_query, dn_mask, dn_meta = \
self.dn_query_generator(batch_data_samples)
query = torch.cat([dn_label_query, query], dim=1)
reference_points = torch.cat([dn_bbox_query, topk_coords_unact],
dim=1)
else:
reference_points = topk_coords_unact
dn_mask, dn_meta = None, None
reference_points = reference_points.sigmoid()
decoder_inputs_dict = dict(
query=query,
memory=memory,
reference_points=reference_points,
dn_mask=dn_mask,
memory_text=memory_text,
text_attention_mask=~text_token_mask,
)
# NOTE DINO calculates encoder losses on scores and coordinates
# of selected top-k encoder queries, while DeformDETR is of all
# encoder queries.
head_inputs_dict = dict(
enc_outputs_class=topk_score,
enc_outputs_coord=topk_coords,
dn_meta=dn_meta) if self.training else dict()
# append text_feats to head_inputs_dict
head_inputs_dict['memory_text'] = memory_text
head_inputs_dict['text_token_mask'] = text_token_mask
return decoder_inputs_dict, head_inputs_dict
def loss(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> Union[dict, list]:
# TODO: Only open vocabulary tasks are supported for training now.
text_prompts = [
data_samples.text for data_samples in batch_data_samples
]
gt_labels = [
data_samples.gt_instances.labels
for data_samples in batch_data_samples
]
new_text_prompts = []
positive_maps = []
if len(set(text_prompts)) == 1:
# All the text prompts are the same,
# so there is no need to calculate them multiple times.
tokenized, caption_string, tokens_positive, _ = \
self.get_tokens_and_prompts(
text_prompts[0], True)
new_text_prompts = [caption_string] * len(batch_inputs)
for gt_label in gt_labels:
new_tokens_positive = [
tokens_positive[label] for label in gt_label
]
_, positive_map = self.get_positive_map(
tokenized, new_tokens_positive)
positive_maps.append(positive_map)
else:
for text_prompt, gt_label in zip(text_prompts, gt_labels):
tokenized, caption_string, tokens_positive, _ = \
self.get_tokens_and_prompts(
text_prompt, True)
new_tokens_positive = [
tokens_positive[label] for label in gt_label
]
_, positive_map = self.get_positive_map(
tokenized, new_tokens_positive)
positive_maps.append(positive_map)
new_text_prompts.append(caption_string)
text_dict = self.language_model(new_text_prompts)
if self.text_feat_map is not None:
text_dict['embedded'] = self.text_feat_map(text_dict['embedded'])
for i, data_samples in enumerate(batch_data_samples):
positive_map = positive_maps[i].to(
batch_inputs.device).bool().float()
text_token_mask = text_dict['text_token_mask'][i]
data_samples.gt_instances.positive_maps = positive_map
data_samples.gt_instances.text_token_mask = \
text_token_mask.unsqueeze(0).repeat(
len(positive_map), 1)
visual_features = self.extract_feat(batch_inputs)
head_inputs_dict = self.forward_transformer(visual_features, text_dict,
batch_data_samples)
losses = self.bbox_head.loss(
**head_inputs_dict, batch_data_samples=batch_data_samples)
return losses
def predict(self, batch_inputs, batch_data_samples, rescale: bool = True):
text_prompts = [
data_samples.text for data_samples in batch_data_samples
]
if 'custom_entities' in batch_data_samples[0]:
# Assuming that the `custom_entities` flag
# inside a batch is always the same. For single image inference
custom_entities = batch_data_samples[0].custom_entities
else:
custom_entities = False
if len(text_prompts) == 1:
# All the text prompts are the same,
# so there is no need to calculate them multiple times.
_positive_maps_and_prompts = [
self.get_tokens_positive_and_prompts(text_prompts[0],
custom_entities)
] * len(batch_inputs)
else:
_positive_maps_and_prompts = [
self.get_tokens_positive_and_prompts(text_prompt,
custom_entities)
for text_prompt in text_prompts
]
token_positive_maps, text_prompts, _, entities = zip(
*_positive_maps_and_prompts)
# extract text feats
text_dict = self.language_model(list(text_prompts))
# text feature map layer
if self.text_feat_map is not None:
text_dict['embedded'] = self.text_feat_map(text_dict['embedded'])
for i, data_samples in enumerate(batch_data_samples):
data_samples.token_positive_map = token_positive_maps[i]
# image feature extraction
visual_feats = self.extract_feat(batch_inputs)
head_inputs_dict = self.forward_transformer(visual_feats, text_dict,
batch_data_samples)
results_list = self.bbox_head.predict(
**head_inputs_dict,
rescale=rescale,
batch_data_samples=batch_data_samples)
for data_sample, pred_instances, entity in zip(batch_data_samples,
results_list, entities):
if len(pred_instances) > 0:
label_names = []
for labels in pred_instances.labels:
if labels >= len(entity):
warnings.warn(
'The unexpected output indicates an issue with '
'named entity recognition. You can try '
'setting custom_entities=True and running '
'again to see if it helps.')
label_names.append('unobject')
else:
label_names.append(entity[labels])
# for visualization
pred_instances.label_names = label_names
data_sample.pred_instances = pred_instances
return batch_data_samples
|