Spaces:
Runtime error
Runtime error
File size: 29,153 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Linear
from mmcv.cnn.bricks.transformer import FFN
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList
from mmdet.structures.bbox import (bbox_cxcywh_to_xyxy, bbox_overlaps,
bbox_xyxy_to_cxcywh)
from mmdet.utils import (ConfigType, InstanceList, OptInstanceList,
OptMultiConfig, reduce_mean)
from ..losses import QualityFocalLoss
from ..utils import multi_apply
@MODELS.register_module()
class DETRHead(BaseModule):
r"""Head of DETR. DETR:End-to-End Object Detection with Transformers.
More details can be found in the `paper
<https://arxiv.org/pdf/2005.12872>`_ .
Args:
num_classes (int): Number of categories excluding the background.
embed_dims (int): The dims of Transformer embedding.
num_reg_fcs (int): Number of fully-connected layers used in `FFN`,
which is then used for the regression head. Defaults to 2.
sync_cls_avg_factor (bool): Whether to sync the `avg_factor` of
all ranks. Default to `False`.
loss_cls (:obj:`ConfigDict` or dict): Config of the classification
loss. Defaults to `CrossEntropyLoss`.
loss_bbox (:obj:`ConfigDict` or dict): Config of the regression bbox
loss. Defaults to `L1Loss`.
loss_iou (:obj:`ConfigDict` or dict): Config of the regression iou
loss. Defaults to `GIoULoss`.
train_cfg (:obj:`ConfigDict` or dict): Training config of transformer
head.
test_cfg (:obj:`ConfigDict` or dict): Testing config of transformer
head.
init_cfg (:obj:`ConfigDict` or dict, optional): the config to control
the initialization. Defaults to None.
"""
_version = 2
def __init__(
self,
num_classes: int,
embed_dims: int = 256,
num_reg_fcs: int = 2,
sync_cls_avg_factor: bool = False,
loss_cls: ConfigType = dict(
type='CrossEntropyLoss',
bg_cls_weight=0.1,
use_sigmoid=False,
loss_weight=1.0,
class_weight=1.0),
loss_bbox: ConfigType = dict(type='L1Loss', loss_weight=5.0),
loss_iou: ConfigType = dict(type='GIoULoss', loss_weight=2.0),
train_cfg: ConfigType = dict(
assigner=dict(
type='HungarianAssigner',
match_costs=[
dict(type='ClassificationCost', weight=1.),
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
dict(type='IoUCost', iou_mode='giou', weight=2.0)
])),
test_cfg: ConfigType = dict(max_per_img=100),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
self.bg_cls_weight = 0
self.sync_cls_avg_factor = sync_cls_avg_factor
class_weight = loss_cls.get('class_weight', None)
if class_weight is not None and (self.__class__ is DETRHead):
assert isinstance(class_weight, float), 'Expected ' \
'class_weight to have type float. Found ' \
f'{type(class_weight)}.'
# NOTE following the official DETR repo, bg_cls_weight means
# relative classification weight of the no-object class.
bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
assert isinstance(bg_cls_weight, float), 'Expected ' \
'bg_cls_weight to have type float. Found ' \
f'{type(bg_cls_weight)}.'
class_weight = torch.ones(num_classes + 1) * class_weight
# set background class as the last indice
class_weight[num_classes] = bg_cls_weight
loss_cls.update({'class_weight': class_weight})
if 'bg_cls_weight' in loss_cls:
loss_cls.pop('bg_cls_weight')
self.bg_cls_weight = bg_cls_weight
if train_cfg:
assert 'assigner' in train_cfg, 'assigner should be provided ' \
'when train_cfg is set.'
assigner = train_cfg['assigner']
self.assigner = TASK_UTILS.build(assigner)
if train_cfg.get('sampler', None) is not None:
raise RuntimeError('DETR do not build sampler.')
self.num_classes = num_classes
self.embed_dims = embed_dims
self.num_reg_fcs = num_reg_fcs
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.loss_cls = MODELS.build(loss_cls)
self.loss_bbox = MODELS.build(loss_bbox)
self.loss_iou = MODELS.build(loss_iou)
if self.loss_cls.use_sigmoid:
self.cls_out_channels = num_classes
else:
self.cls_out_channels = num_classes + 1
self._init_layers()
def _init_layers(self) -> None:
"""Initialize layers of the transformer head."""
# cls branch
self.fc_cls = Linear(self.embed_dims, self.cls_out_channels)
# reg branch
self.activate = nn.ReLU()
self.reg_ffn = FFN(
self.embed_dims,
self.embed_dims,
self.num_reg_fcs,
dict(type='ReLU', inplace=True),
dropout=0.0,
add_residual=False)
# NOTE the activations of reg_branch here is the same as
# those in transformer, but they are actually different
# in DAB-DETR (prelu in transformer and relu in reg_branch)
self.fc_reg = Linear(self.embed_dims, 4)
def forward(self, hidden_states: Tensor) -> Tuple[Tensor]:
""""Forward function.
Args:
hidden_states (Tensor): Features from transformer decoder. If
`return_intermediate_dec` in detr.py is True output has shape
(num_decoder_layers, bs, num_queries, dim), else has shape
(1, bs, num_queries, dim) which only contains the last layer
outputs.
Returns:
tuple[Tensor]: results of head containing the following tensor.
- layers_cls_scores (Tensor): Outputs from the classification head,
shape (num_decoder_layers, bs, num_queries, cls_out_channels).
Note cls_out_channels should include background.
- layers_bbox_preds (Tensor): Sigmoid outputs from the regression
head with normalized coordinate format (cx, cy, w, h), has shape
(num_decoder_layers, bs, num_queries, 4).
"""
layers_cls_scores = self.fc_cls(hidden_states)
layers_bbox_preds = self.fc_reg(
self.activate(self.reg_ffn(hidden_states))).sigmoid()
return layers_cls_scores, layers_bbox_preds
def loss(self, hidden_states: Tensor,
batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the features of the upstream network.
Args:
hidden_states (Tensor): Feature from the transformer decoder, has
shape (num_decoder_layers, bs, num_queries, cls_out_channels)
or (num_decoder_layers, num_queries, bs, cls_out_channels).
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
dict: A dictionary of loss components.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states)
loss_inputs = outs + (batch_gt_instances, batch_img_metas)
losses = self.loss_by_feat(*loss_inputs)
return losses
def loss_by_feat(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
""""Loss function.
Only outputs from the last feature level are used for computing
losses by default.
Args:
all_layers_cls_scores (Tensor): Classification outputs
of each decoder layers. Each is a 4D-tensor, has shape
(num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor): Sigmoid regression
outputs of each decoder layers. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and shape
(num_decoder_layers, bs, num_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert batch_gt_instances_ignore is None, \
f'{self.__class__.__name__} only supports ' \
'for batch_gt_instances_ignore setting to None.'
losses_cls, losses_bbox, losses_iou = multi_apply(
self.loss_by_feat_single,
all_layers_cls_scores,
all_layers_bbox_preds,
batch_gt_instances=batch_gt_instances,
batch_img_metas=batch_img_metas)
loss_dict = dict()
# loss from the last decoder layer
loss_dict['loss_cls'] = losses_cls[-1]
loss_dict['loss_bbox'] = losses_bbox[-1]
loss_dict['loss_iou'] = losses_iou[-1]
# loss from other decoder layers
num_dec_layer = 0
for loss_cls_i, loss_bbox_i, loss_iou_i in \
zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]):
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
num_dec_layer += 1
return loss_dict
def loss_by_feat_single(self, cls_scores: Tensor, bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict]) -> Tuple[Tensor]:
"""Loss function for outputs from a single decoder layer of a single
feature level.
Args:
cls_scores (Tensor): Box score logits from a single decoder layer
for all images, has shape (bs, num_queries, cls_out_channels).
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
for all images, with normalized coordinate (cx, cy, w, h) and
shape (bs, num_queries, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
Returns:
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
`loss_iou`.
"""
num_imgs = cls_scores.size(0)
cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
batch_gt_instances, batch_img_metas)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.cat(labels_list, 0)
label_weights = torch.cat(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# classification loss
cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = num_total_pos * 1.0 + \
num_total_neg * self.bg_cls_weight
if self.sync_cls_avg_factor:
cls_avg_factor = reduce_mean(
cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
if isinstance(self.loss_cls, QualityFocalLoss):
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
scores = label_weights.new_zeros(labels.shape)
pos_bbox_targets = bbox_targets[pos_inds]
pos_decode_bbox_targets = bbox_cxcywh_to_xyxy(pos_bbox_targets)
pos_bbox_pred = bbox_preds.reshape(-1, 4)[pos_inds]
pos_decode_bbox_pred = bbox_cxcywh_to_xyxy(pos_bbox_pred)
scores[pos_inds] = bbox_overlaps(
pos_decode_bbox_pred.detach(),
pos_decode_bbox_targets,
is_aligned=True)
loss_cls = self.loss_cls(
cls_scores, (labels, scores),
label_weights,
avg_factor=cls_avg_factor)
else:
loss_cls = self.loss_cls(
cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
# construct factors used for rescale bboxes
factors = []
for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds):
img_h, img_w, = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0).repeat(
bbox_pred.size(0), 1)
factors.append(factor)
factors = torch.cat(factors, 0)
# DETR regress the relative position of boxes (cxcywh) in the image,
# thus the learning target is normalized by the image size. So here
# we need to re-scale them for calculating IoU loss
bbox_preds = bbox_preds.reshape(-1, 4)
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors
# regression IoU loss, defaultly GIoU loss
loss_iou = self.loss_iou(
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)
# regression L1 loss
loss_bbox = self.loss_bbox(
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
return loss_cls, loss_bbox, loss_iou
def get_targets(self, cls_scores_list: List[Tensor],
bbox_preds_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict]) -> tuple:
"""Compute regression and classification targets for a batch image.
Outputs from a single decoder layer of a single feature level are used.
Args:
cls_scores_list (list[Tensor]): Box score logits from a single
decoder layer for each image, has shape [num_queries,
cls_out_channels].
bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
decoder layer for each image, with normalized coordinate
(cx, cy, w, h) and shape [num_queries, 4].
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
Returns:
tuple: a tuple containing the following targets.
- labels_list (list[Tensor]): Labels for all images.
- label_weights_list (list[Tensor]): Label weights for all images.
- bbox_targets_list (list[Tensor]): BBox targets for all images.
- bbox_weights_list (list[Tensor]): BBox weights for all images.
- num_total_pos (int): Number of positive samples in all images.
- num_total_neg (int): Number of negative samples in all images.
"""
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
pos_inds_list,
neg_inds_list) = multi_apply(self._get_targets_single,
cls_scores_list, bbox_preds_list,
batch_gt_instances, batch_img_metas)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
return (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg)
def _get_targets_single(self, cls_score: Tensor, bbox_pred: Tensor,
gt_instances: InstanceData,
img_meta: dict) -> tuple:
"""Compute regression and classification targets for one image.
Outputs from a single decoder layer of a single feature level are used.
Args:
cls_score (Tensor): Box score logits from a single decoder layer
for one image. Shape [num_queries, cls_out_channels].
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
for one image, with normalized coordinate (cx, cy, w, h) and
shape [num_queries, 4].
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for one image.
Returns:
tuple[Tensor]: a tuple containing the following for one image.
- labels (Tensor): Labels of each image.
- label_weights (Tensor]): Label weights of each image.
- bbox_targets (Tensor): BBox targets of each image.
- bbox_weights (Tensor): BBox weights of each image.
- pos_inds (Tensor): Sampled positive indices for each image.
- neg_inds (Tensor): Sampled negative indices for each image.
"""
img_h, img_w = img_meta['img_shape']
factor = bbox_pred.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0)
num_bboxes = bbox_pred.size(0)
# convert bbox_pred from xywh, normalized to xyxy, unnormalized
bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred)
bbox_pred = bbox_pred * factor
pred_instances = InstanceData(scores=cls_score, bboxes=bbox_pred)
# assigner and sampler
assign_result = self.assigner.assign(
pred_instances=pred_instances,
gt_instances=gt_instances,
img_meta=img_meta)
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels
pos_inds = torch.nonzero(
assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique()
neg_inds = torch.nonzero(
assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique()
pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds.long(), :]
# label targets
labels = gt_bboxes.new_full((num_bboxes, ),
self.num_classes,
dtype=torch.long)
labels[pos_inds] = gt_labels[pos_assigned_gt_inds]
label_weights = gt_bboxes.new_ones(num_bboxes)
# bbox targets
bbox_targets = torch.zeros_like(bbox_pred, dtype=gt_bboxes.dtype)
bbox_weights = torch.zeros_like(bbox_pred, dtype=gt_bboxes.dtype)
bbox_weights[pos_inds] = 1.0
# DETR regress the relative position of boxes (cxcywh) in the image.
# Thus the learning target should be normalized by the image size, also
# the box format should be converted from defaultly x1y1x2y2 to cxcywh.
pos_gt_bboxes_normalized = pos_gt_bboxes / factor
pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
bbox_targets[pos_inds] = pos_gt_bboxes_targets
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds)
def loss_and_predict(
self, hidden_states: Tuple[Tensor],
batch_data_samples: SampleList) -> Tuple[dict, InstanceList]:
"""Perform forward propagation of the head, then calculate loss and
predictions from the features and data samples. Over-write because
img_metas are needed as inputs for bbox_head.
Args:
hidden_states (tuple[Tensor]): Feature from the transformer
decoder, has shape (num_decoder_layers, bs, num_queries, dim).
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
the meta information of each image and corresponding
annotations.
Returns:
tuple: the return value is a tuple contains:
- losses: (dict[str, Tensor]): A dictionary of loss components.
- predictions (list[:obj:`InstanceData`]): Detection
results of each image after the post process.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states)
loss_inputs = outs + (batch_gt_instances, batch_img_metas)
losses = self.loss_by_feat(*loss_inputs)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_img_metas)
return losses, predictions
def predict(self,
hidden_states: Tuple[Tensor],
batch_data_samples: SampleList,
rescale: bool = True) -> InstanceList:
"""Perform forward propagation of the detection head and predict
detection results on the features of the upstream network. Over-write
because img_metas are needed as inputs for bbox_head.
Args:
hidden_states (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): Whether to rescale the results.
Defaults to True.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
last_layer_hidden_state = hidden_states[-1].unsqueeze(0)
outs = self(last_layer_hidden_state)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_img_metas, rescale=rescale)
return predictions
def predict_by_feat(self,
layer_cls_scores: Tensor,
layer_bbox_preds: Tensor,
batch_img_metas: List[dict],
rescale: bool = True) -> InstanceList:
"""Transform network outputs for a batch into bbox predictions.
Args:
layer_cls_scores (Tensor): Classification outputs of the last or
all decoder layer. Each is a 4D-tensor, has shape
(num_decoder_layers, bs, num_queries, cls_out_channels).
layer_bbox_preds (Tensor): Sigmoid regression outputs of the last
or all decoder layer. Each is a 4D-tensor with normalized
coordinate format (cx, cy, w, h) and shape
(num_decoder_layers, bs, num_queries, 4).
batch_img_metas (list[dict]): Meta information of each image.
rescale (bool, optional): If `True`, return boxes in original
image space. Defaults to `True`.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
# NOTE only using outputs from the last feature level,
# and only the outputs from the last decoder layer is used.
cls_scores = layer_cls_scores[-1]
bbox_preds = layer_bbox_preds[-1]
result_list = []
for img_id in range(len(batch_img_metas)):
cls_score = cls_scores[img_id]
bbox_pred = bbox_preds[img_id]
img_meta = batch_img_metas[img_id]
results = self._predict_by_feat_single(cls_score, bbox_pred,
img_meta, rescale)
result_list.append(results)
return result_list
def _predict_by_feat_single(self,
cls_score: Tensor,
bbox_pred: Tensor,
img_meta: dict,
rescale: bool = True) -> InstanceData:
"""Transform outputs from the last decoder layer into bbox predictions
for each image.
Args:
cls_score (Tensor): Box score logits from the last decoder layer
for each image. Shape [num_queries, cls_out_channels].
bbox_pred (Tensor): Sigmoid outputs from the last decoder layer
for each image, with coordinate format (cx, cy, w, h) and
shape [num_queries, 4].
img_meta (dict): Image meta info.
rescale (bool): If True, return boxes in original image
space. Default True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(cls_score) == len(bbox_pred) # num_queries
max_per_img = self.test_cfg.get('max_per_img', len(cls_score))
img_shape = img_meta['img_shape']
# exclude background
if self.loss_cls.use_sigmoid:
cls_score = cls_score.sigmoid()
scores, indexes = cls_score.view(-1).topk(max_per_img)
det_labels = indexes % self.num_classes
bbox_index = indexes // self.num_classes
bbox_pred = bbox_pred[bbox_index]
else:
scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1)
scores, bbox_index = scores.topk(max_per_img)
bbox_pred = bbox_pred[bbox_index]
det_labels = det_labels[bbox_index]
det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred)
det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1])
det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0])
if rescale:
assert img_meta.get('scale_factor') is not None
det_bboxes /= det_bboxes.new_tensor(
img_meta['scale_factor']).repeat((1, 2))
results = InstanceData()
results.bboxes = det_bboxes
results.scores = scores
results.labels = det_labels
return results
|