File size: 29,153 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Linear
from mmcv.cnn.bricks.transformer import FFN
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList
from mmdet.structures.bbox import (bbox_cxcywh_to_xyxy, bbox_overlaps,
                                   bbox_xyxy_to_cxcywh)
from mmdet.utils import (ConfigType, InstanceList, OptInstanceList,
                         OptMultiConfig, reduce_mean)
from ..losses import QualityFocalLoss
from ..utils import multi_apply


@MODELS.register_module()
class DETRHead(BaseModule):
    r"""Head of DETR. DETR:End-to-End Object Detection with Transformers.

    More details can be found in the `paper
    <https://arxiv.org/pdf/2005.12872>`_ .

    Args:
        num_classes (int): Number of categories excluding the background.
        embed_dims (int): The dims of Transformer embedding.
        num_reg_fcs (int): Number of fully-connected layers used in `FFN`,
            which is then used for the regression head. Defaults to 2.
        sync_cls_avg_factor (bool): Whether to sync the `avg_factor` of
            all ranks. Default to `False`.
        loss_cls (:obj:`ConfigDict` or dict): Config of the classification
            loss. Defaults to `CrossEntropyLoss`.
        loss_bbox (:obj:`ConfigDict` or dict): Config of the regression bbox
            loss. Defaults to `L1Loss`.
        loss_iou (:obj:`ConfigDict` or dict): Config of the regression iou
            loss. Defaults to `GIoULoss`.
        train_cfg (:obj:`ConfigDict` or dict): Training config of transformer
            head.
        test_cfg (:obj:`ConfigDict` or dict): Testing config of transformer
            head.
        init_cfg (:obj:`ConfigDict` or dict, optional): the config to control
            the initialization. Defaults to None.
    """

    _version = 2

    def __init__(
            self,
            num_classes: int,
            embed_dims: int = 256,
            num_reg_fcs: int = 2,
            sync_cls_avg_factor: bool = False,
            loss_cls: ConfigType = dict(
                type='CrossEntropyLoss',
                bg_cls_weight=0.1,
                use_sigmoid=False,
                loss_weight=1.0,
                class_weight=1.0),
            loss_bbox: ConfigType = dict(type='L1Loss', loss_weight=5.0),
            loss_iou: ConfigType = dict(type='GIoULoss', loss_weight=2.0),
            train_cfg: ConfigType = dict(
                assigner=dict(
                    type='HungarianAssigner',
                    match_costs=[
                        dict(type='ClassificationCost', weight=1.),
                        dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
                        dict(type='IoUCost', iou_mode='giou', weight=2.0)
                    ])),
            test_cfg: ConfigType = dict(max_per_img=100),
            init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        self.bg_cls_weight = 0
        self.sync_cls_avg_factor = sync_cls_avg_factor
        class_weight = loss_cls.get('class_weight', None)
        if class_weight is not None and (self.__class__ is DETRHead):
            assert isinstance(class_weight, float), 'Expected ' \
                'class_weight to have type float. Found ' \
                f'{type(class_weight)}.'
            # NOTE following the official DETR repo, bg_cls_weight means
            # relative classification weight of the no-object class.
            bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
            assert isinstance(bg_cls_weight, float), 'Expected ' \
                'bg_cls_weight to have type float. Found ' \
                f'{type(bg_cls_weight)}.'
            class_weight = torch.ones(num_classes + 1) * class_weight
            # set background class as the last indice
            class_weight[num_classes] = bg_cls_weight
            loss_cls.update({'class_weight': class_weight})
            if 'bg_cls_weight' in loss_cls:
                loss_cls.pop('bg_cls_weight')
            self.bg_cls_weight = bg_cls_weight

        if train_cfg:
            assert 'assigner' in train_cfg, 'assigner should be provided ' \
                                            'when train_cfg is set.'
            assigner = train_cfg['assigner']
            self.assigner = TASK_UTILS.build(assigner)
            if train_cfg.get('sampler', None) is not None:
                raise RuntimeError('DETR do not build sampler.')
        self.num_classes = num_classes
        self.embed_dims = embed_dims
        self.num_reg_fcs = num_reg_fcs
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_bbox = MODELS.build(loss_bbox)
        self.loss_iou = MODELS.build(loss_iou)

        if self.loss_cls.use_sigmoid:
            self.cls_out_channels = num_classes
        else:
            self.cls_out_channels = num_classes + 1

        self._init_layers()

    def _init_layers(self) -> None:
        """Initialize layers of the transformer head."""
        # cls branch
        self.fc_cls = Linear(self.embed_dims, self.cls_out_channels)
        # reg branch
        self.activate = nn.ReLU()
        self.reg_ffn = FFN(
            self.embed_dims,
            self.embed_dims,
            self.num_reg_fcs,
            dict(type='ReLU', inplace=True),
            dropout=0.0,
            add_residual=False)
        # NOTE the activations of reg_branch here is the same as
        # those in transformer, but they are actually different
        # in DAB-DETR (prelu in transformer and relu in reg_branch)
        self.fc_reg = Linear(self.embed_dims, 4)

    def forward(self, hidden_states: Tensor) -> Tuple[Tensor]:
        """"Forward function.

        Args:
            hidden_states (Tensor): Features from transformer decoder. If
                `return_intermediate_dec` in detr.py is True output has shape
                (num_decoder_layers, bs, num_queries, dim), else has shape
                (1, bs, num_queries, dim) which only contains the last layer
                outputs.
        Returns:
            tuple[Tensor]: results of head containing the following tensor.

            - layers_cls_scores (Tensor): Outputs from the classification head,
              shape (num_decoder_layers, bs, num_queries, cls_out_channels).
              Note cls_out_channels should include background.
            - layers_bbox_preds (Tensor): Sigmoid outputs from the regression
              head with normalized coordinate format (cx, cy, w, h), has shape
              (num_decoder_layers, bs, num_queries, 4).
        """
        layers_cls_scores = self.fc_cls(hidden_states)
        layers_bbox_preds = self.fc_reg(
            self.activate(self.reg_ffn(hidden_states))).sigmoid()
        return layers_cls_scores, layers_bbox_preds

    def loss(self, hidden_states: Tensor,
             batch_data_samples: SampleList) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the features of the upstream network.

        Args:
            hidden_states (Tensor): Feature from the transformer decoder, has
                shape (num_decoder_layers, bs, num_queries, cls_out_channels)
                or (num_decoder_layers, num_queries, bs, cls_out_channels).
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components.
        """
        batch_gt_instances = []
        batch_img_metas = []
        for data_sample in batch_data_samples:
            batch_img_metas.append(data_sample.metainfo)
            batch_gt_instances.append(data_sample.gt_instances)

        outs = self(hidden_states)
        loss_inputs = outs + (batch_gt_instances, batch_img_metas)
        losses = self.loss_by_feat(*loss_inputs)
        return losses

    def loss_by_feat(
        self,
        all_layers_cls_scores: Tensor,
        all_layers_bbox_preds: Tensor,
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """"Loss function.

        Only outputs from the last feature level are used for computing
        losses by default.

        Args:
            all_layers_cls_scores (Tensor): Classification outputs
                of each decoder layers. Each is a 4D-tensor, has shape
                (num_decoder_layers, bs, num_queries, cls_out_channels).
            all_layers_bbox_preds (Tensor): Sigmoid regression
                outputs of each decoder layers. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                (num_decoder_layers, bs, num_queries, 4).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert batch_gt_instances_ignore is None, \
            f'{self.__class__.__name__} only supports ' \
            'for batch_gt_instances_ignore setting to None.'

        losses_cls, losses_bbox, losses_iou = multi_apply(
            self.loss_by_feat_single,
            all_layers_cls_scores,
            all_layers_bbox_preds,
            batch_gt_instances=batch_gt_instances,
            batch_img_metas=batch_img_metas)

        loss_dict = dict()
        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]
        loss_dict['loss_iou'] = losses_iou[-1]
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i, loss_iou_i in \
                zip(losses_cls[:-1], losses_bbox[:-1], losses_iou[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
            num_dec_layer += 1
        return loss_dict

    def loss_by_feat_single(self, cls_scores: Tensor, bbox_preds: Tensor,
                            batch_gt_instances: InstanceList,
                            batch_img_metas: List[dict]) -> Tuple[Tensor]:
        """Loss function for outputs from a single decoder layer of a single
        feature level.

        Args:
            cls_scores (Tensor): Box score logits from a single decoder layer
                for all images, has shape (bs, num_queries, cls_out_channels).
            bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
                for all images, with normalized coordinate (cx, cy, w, h) and
                shape (bs, num_queries, 4).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.

        Returns:
            Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and
            `loss_iou`.
        """
        num_imgs = cls_scores.size(0)
        cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
        bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
        cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
                                           batch_gt_instances, batch_img_metas)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        labels = torch.cat(labels_list, 0)
        label_weights = torch.cat(label_weights_list, 0)
        bbox_targets = torch.cat(bbox_targets_list, 0)
        bbox_weights = torch.cat(bbox_weights_list, 0)

        # classification loss
        cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = num_total_pos * 1.0 + \
            num_total_neg * self.bg_cls_weight
        if self.sync_cls_avg_factor:
            cls_avg_factor = reduce_mean(
                cls_scores.new_tensor([cls_avg_factor]))
        cls_avg_factor = max(cls_avg_factor, 1)

        if isinstance(self.loss_cls, QualityFocalLoss):
            bg_class_ind = self.num_classes
            pos_inds = ((labels >= 0)
                        & (labels < bg_class_ind)).nonzero().squeeze(1)
            scores = label_weights.new_zeros(labels.shape)
            pos_bbox_targets = bbox_targets[pos_inds]
            pos_decode_bbox_targets = bbox_cxcywh_to_xyxy(pos_bbox_targets)
            pos_bbox_pred = bbox_preds.reshape(-1, 4)[pos_inds]
            pos_decode_bbox_pred = bbox_cxcywh_to_xyxy(pos_bbox_pred)
            scores[pos_inds] = bbox_overlaps(
                pos_decode_bbox_pred.detach(),
                pos_decode_bbox_targets,
                is_aligned=True)
            loss_cls = self.loss_cls(
                cls_scores, (labels, scores),
                label_weights,
                avg_factor=cls_avg_factor)
        else:
            loss_cls = self.loss_cls(
                cls_scores, labels, label_weights, avg_factor=cls_avg_factor)

        # Compute the average number of gt boxes across all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()

        # construct factors used for rescale bboxes
        factors = []
        for img_meta, bbox_pred in zip(batch_img_metas, bbox_preds):
            img_h, img_w, = img_meta['img_shape']
            factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                           img_h]).unsqueeze(0).repeat(
                                               bbox_pred.size(0), 1)
            factors.append(factor)
        factors = torch.cat(factors, 0)

        # DETR regress the relative position of boxes (cxcywh) in the image,
        # thus the learning target is normalized by the image size. So here
        # we need to re-scale them for calculating IoU loss
        bbox_preds = bbox_preds.reshape(-1, 4)
        bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
        bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors

        # regression IoU loss, defaultly GIoU loss
        loss_iou = self.loss_iou(
            bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)

        # regression L1 loss
        loss_bbox = self.loss_bbox(
            bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
        return loss_cls, loss_bbox, loss_iou

    def get_targets(self, cls_scores_list: List[Tensor],
                    bbox_preds_list: List[Tensor],
                    batch_gt_instances: InstanceList,
                    batch_img_metas: List[dict]) -> tuple:
        """Compute regression and classification targets for a batch image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_scores_list (list[Tensor]): Box score logits from a single
                decoder layer for each image, has shape [num_queries,
                cls_out_channels].
            bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
                decoder layer for each image, with normalized coordinate
                (cx, cy, w, h) and shape [num_queries, 4].
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.

        Returns:
            tuple: a tuple containing the following targets.

            - labels_list (list[Tensor]): Labels for all images.
            - label_weights_list (list[Tensor]): Label weights for all images.
            - bbox_targets_list (list[Tensor]): BBox targets for all images.
            - bbox_weights_list (list[Tensor]): BBox weights for all images.
            - num_total_pos (int): Number of positive samples in all images.
            - num_total_neg (int): Number of negative samples in all images.
        """
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         pos_inds_list,
         neg_inds_list) = multi_apply(self._get_targets_single,
                                      cls_scores_list, bbox_preds_list,
                                      batch_gt_instances, batch_img_metas)
        num_total_pos = sum((inds.numel() for inds in pos_inds_list))
        num_total_neg = sum((inds.numel() for inds in neg_inds_list))
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def _get_targets_single(self, cls_score: Tensor, bbox_pred: Tensor,
                            gt_instances: InstanceData,
                            img_meta: dict) -> tuple:
        """Compute regression and classification targets for one image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_score (Tensor): Box score logits from a single decoder layer
                for one image. Shape [num_queries, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
                for one image, with normalized coordinate (cx, cy, w, h) and
                shape [num_queries, 4].
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes`` and ``labels``
                attributes.
            img_meta (dict): Meta information for one image.

        Returns:
            tuple[Tensor]: a tuple containing the following for one image.

            - labels (Tensor): Labels of each image.
            - label_weights (Tensor]): Label weights of each image.
            - bbox_targets (Tensor): BBox targets of each image.
            - bbox_weights (Tensor): BBox weights of each image.
            - pos_inds (Tensor): Sampled positive indices for each image.
            - neg_inds (Tensor): Sampled negative indices for each image.
        """
        img_h, img_w = img_meta['img_shape']
        factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)
        num_bboxes = bbox_pred.size(0)
        # convert bbox_pred from xywh, normalized to xyxy, unnormalized
        bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred)
        bbox_pred = bbox_pred * factor

        pred_instances = InstanceData(scores=cls_score, bboxes=bbox_pred)
        # assigner and sampler
        assign_result = self.assigner.assign(
            pred_instances=pred_instances,
            gt_instances=gt_instances,
            img_meta=img_meta)

        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels
        pos_inds = torch.nonzero(
            assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique()
        neg_inds = torch.nonzero(
            assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique()
        pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
        pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds.long(), :]

        # label targets
        labels = gt_bboxes.new_full((num_bboxes, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[pos_assigned_gt_inds]
        label_weights = gt_bboxes.new_ones(num_bboxes)

        # bbox targets
        bbox_targets = torch.zeros_like(bbox_pred, dtype=gt_bboxes.dtype)
        bbox_weights = torch.zeros_like(bbox_pred, dtype=gt_bboxes.dtype)
        bbox_weights[pos_inds] = 1.0

        # DETR regress the relative position of boxes (cxcywh) in the image.
        # Thus the learning target should be normalized by the image size, also
        # the box format should be converted from defaultly x1y1x2y2 to cxcywh.
        pos_gt_bboxes_normalized = pos_gt_bboxes / factor
        pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
        bbox_targets[pos_inds] = pos_gt_bboxes_targets
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    def loss_and_predict(
            self, hidden_states: Tuple[Tensor],
            batch_data_samples: SampleList) -> Tuple[dict, InstanceList]:
        """Perform forward propagation of the head, then calculate loss and
        predictions from the features and data samples. Over-write because
        img_metas are needed as inputs for bbox_head.

        Args:
            hidden_states (tuple[Tensor]): Feature from the transformer
                decoder, has shape (num_decoder_layers, bs, num_queries, dim).
            batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
                the meta information of each image and corresponding
                annotations.

        Returns:
            tuple: the return value is a tuple contains:

            - losses: (dict[str, Tensor]): A dictionary of loss components.
            - predictions (list[:obj:`InstanceData`]): Detection
              results of each image after the post process.
        """
        batch_gt_instances = []
        batch_img_metas = []
        for data_sample in batch_data_samples:
            batch_img_metas.append(data_sample.metainfo)
            batch_gt_instances.append(data_sample.gt_instances)

        outs = self(hidden_states)
        loss_inputs = outs + (batch_gt_instances, batch_img_metas)
        losses = self.loss_by_feat(*loss_inputs)

        predictions = self.predict_by_feat(
            *outs, batch_img_metas=batch_img_metas)
        return losses, predictions

    def predict(self,
                hidden_states: Tuple[Tensor],
                batch_data_samples: SampleList,
                rescale: bool = True) -> InstanceList:
        """Perform forward propagation of the detection head and predict
        detection results on the features of the upstream network. Over-write
        because img_metas are needed as inputs for bbox_head.

        Args:
            hidden_states (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to True.

        Returns:
            list[obj:`InstanceData`]: Detection results of each image
            after the post process.
        """
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]

        last_layer_hidden_state = hidden_states[-1].unsqueeze(0)
        outs = self(last_layer_hidden_state)

        predictions = self.predict_by_feat(
            *outs, batch_img_metas=batch_img_metas, rescale=rescale)

        return predictions

    def predict_by_feat(self,
                        layer_cls_scores: Tensor,
                        layer_bbox_preds: Tensor,
                        batch_img_metas: List[dict],
                        rescale: bool = True) -> InstanceList:
        """Transform network outputs for a batch into bbox predictions.

        Args:
            layer_cls_scores (Tensor): Classification outputs of the last or
                all decoder layer. Each is a 4D-tensor, has shape
                (num_decoder_layers, bs, num_queries, cls_out_channels).
            layer_bbox_preds (Tensor): Sigmoid regression outputs of the last
                or all decoder layer. Each is a 4D-tensor with normalized
                coordinate format (cx, cy, w, h) and shape
                (num_decoder_layers, bs, num_queries, 4).
            batch_img_metas (list[dict]): Meta information of each image.
            rescale (bool, optional): If `True`, return boxes in original
                image space. Defaults to `True`.

        Returns:
            list[:obj:`InstanceData`]: Object detection results of each image
            after the post process. Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        # NOTE only using outputs from the last feature level,
        # and only the outputs from the last decoder layer is used.
        cls_scores = layer_cls_scores[-1]
        bbox_preds = layer_bbox_preds[-1]

        result_list = []
        for img_id in range(len(batch_img_metas)):
            cls_score = cls_scores[img_id]
            bbox_pred = bbox_preds[img_id]
            img_meta = batch_img_metas[img_id]
            results = self._predict_by_feat_single(cls_score, bbox_pred,
                                                   img_meta, rescale)
            result_list.append(results)
        return result_list

    def _predict_by_feat_single(self,
                                cls_score: Tensor,
                                bbox_pred: Tensor,
                                img_meta: dict,
                                rescale: bool = True) -> InstanceData:
        """Transform outputs from the last decoder layer into bbox predictions
        for each image.

        Args:
            cls_score (Tensor): Box score logits from the last decoder layer
                for each image. Shape [num_queries, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from the last decoder layer
                for each image, with coordinate format (cx, cy, w, h) and
                shape [num_queries, 4].
            img_meta (dict): Image meta info.
            rescale (bool): If True, return boxes in original image
                space. Default True.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert len(cls_score) == len(bbox_pred)  # num_queries
        max_per_img = self.test_cfg.get('max_per_img', len(cls_score))
        img_shape = img_meta['img_shape']
        # exclude background
        if self.loss_cls.use_sigmoid:
            cls_score = cls_score.sigmoid()
            scores, indexes = cls_score.view(-1).topk(max_per_img)
            det_labels = indexes % self.num_classes
            bbox_index = indexes // self.num_classes
            bbox_pred = bbox_pred[bbox_index]
        else:
            scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1)
            scores, bbox_index = scores.topk(max_per_img)
            bbox_pred = bbox_pred[bbox_index]
            det_labels = det_labels[bbox_index]

        det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred)
        det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
        det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
        det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1])
        det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0])
        if rescale:
            assert img_meta.get('scale_factor') is not None
            det_bboxes /= det_bboxes.new_tensor(
                img_meta['scale_factor']).repeat((1, 2))

        results = InstanceData()
        results.bboxes = det_bboxes
        results.scores = scores
        results.labels = det_labels
        return results