File size: 12,766 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Union

import numpy as np
import torch
import torch.nn.functional as F
from mmengine.model.utils import stack_batch

from mmdet.models.utils.misc import samplelist_boxtype2tensor
from mmdet.registry import MODELS
from mmdet.structures import TrackDataSample
from mmdet.structures.mask import BitmapMasks
from .data_preprocessor import DetDataPreprocessor


@MODELS.register_module()
class TrackDataPreprocessor(DetDataPreprocessor):
    """Image pre-processor for tracking tasks.

        Accepts the data sampled by the dataloader, and preprocesses
        it into the format of the model input. ``TrackDataPreprocessor``
        provides the tracking data pre-processing as follows:

        - Collate and move data to the target device.
        - Pad inputs to the maximum size of current batch with defined
          ``pad_value``. The padding size can be divisible by a defined
          ``pad_size_divisor``
        - Stack inputs to inputs.
        - Convert inputs from bgr to rgb if the shape of input is (1, 3, H, W).
        - Normalize image with defined std and mean.
        - Do batch augmentations during training.
        - Record the information of ``batch_input_shape`` and ``pad_shape``.

        Args:
            mean (Sequence[Number], optional): The pixel mean of R, G, B
                channels. Defaults to None.
            std (Sequence[Number], optional): The pixel standard deviation of
                R, G, B channels. Defaults to None.
            pad_size_divisor (int): The size of padded image should be
                divisible by ``pad_size_divisor``. Defaults to 1.
            pad_value (Number): The padded pixel value. Defaults to 0.
            pad_mask (bool): Whether to pad instance masks. Defaults to False.
            mask_pad_value (int): The padded pixel value for instance masks.
                Defaults to 0.
            bgr_to_rgb (bool): whether to convert image from BGR to RGB.
                Defaults to False.
            rgb_to_bgr (bool): whether to convert image from RGB to RGB.
                Defaults to False.
            use_det_processor: (bool): whether to use DetDataPreprocessor
                in training phrase. This is mainly for some tracking models
                fed into one image rather than a group of image in training.
                Defaults to False.
    .       boxtype2tensor (bool): Whether to convert the ``BaseBoxes`` type of
                bboxes data to ``Tensor`` type. Defaults to True.
            batch_augments (list[dict], optional): Batch-level augmentations
    """

    def __init__(self,
                 mean: Optional[Sequence[Union[float, int]]] = None,
                 std: Optional[Sequence[Union[float, int]]] = None,
                 use_det_processor: bool = False,
                 **kwargs):
        super().__init__(mean=mean, std=std, **kwargs)
        self.use_det_processor = use_det_processor
        if mean is not None and not self.use_det_processor:
            # overwrite the ``register_bufffer`` in ``ImgDataPreprocessor``
            # since the shape of ``mean`` and ``std`` in tracking tasks must be
            # (T, C, H, W), which T is the temporal length of the video.
            self.register_buffer('mean',
                                 torch.tensor(mean).view(1, -1, 1, 1), False)
            self.register_buffer('std',
                                 torch.tensor(std).view(1, -1, 1, 1), False)

    def forward(self, data: dict, training: bool = False) -> Dict:
        """Perform normalization,padding and bgr2rgb conversion based on
        ``TrackDataPreprocessor``.

        Args:
            data (dict): data sampled from dataloader.
            training (bool): Whether to enable training time augmentation.

        Returns:
            Tuple[Dict[str, List[torch.Tensor]], OptSampleList]: Data in the
            same format as the model input.
        """
        if self.use_det_processor and training:
            batch_pad_shape = self._get_pad_shape(data)
        else:
            batch_pad_shape = self._get_track_pad_shape(data)

        data = self.cast_data(data)
        imgs, data_samples = data['inputs'], data['data_samples']

        if self.use_det_processor and training:
            assert imgs[0].dim() == 3, \
                'Only support the 3 dims when use detpreprocessor in training'
            if self._channel_conversion:
                imgs = [_img[[2, 1, 0], ...] for _img in imgs]
            # Convert to `float`
            imgs = [_img.float() for _img in imgs]
            if self._enable_normalize:
                imgs = [(_img - self.mean) / self.std for _img in imgs]
            inputs = stack_batch(imgs, self.pad_size_divisor, self.pad_value)
        else:
            assert imgs[0].dim() == 4, \
                'Only support the 4 dims when use trackprocessor in training'
            # The shape of imgs[0] is (T, C, H, W).
            channel = imgs[0].size(1)
            if self._channel_conversion and channel == 3:
                imgs = [_img[:, [2, 1, 0], ...] for _img in imgs]
            # change to `float`
            imgs = [_img.float() for _img in imgs]
            if self._enable_normalize:
                imgs = [(_img - self.mean) / self.std for _img in imgs]
            inputs = stack_track_batch(imgs, self.pad_size_divisor,
                                       self.pad_value)

        if data_samples is not None:
            # NOTE the batched image size information may be useful, e.g.
            # in DETR, this is needed for the construction of masks, which is
            # then used for the transformer_head.
            batch_input_shape = tuple(inputs.size()[-2:])
            if self.use_det_processor and training:
                for data_sample, pad_shape in zip(data_samples,
                                                  batch_pad_shape):
                    data_sample.set_metainfo({
                        'batch_input_shape': batch_input_shape,
                        'pad_shape': pad_shape
                    })
                if self.boxtype2tensor:
                    samplelist_boxtype2tensor(data_samples)
                if self.pad_mask:
                    self.pad_gt_masks(data_samples)
            else:
                for track_data_sample, pad_shapes in zip(
                        data_samples, batch_pad_shape):
                    for i in range(len(track_data_sample)):
                        det_data_sample = track_data_sample[i]
                        det_data_sample.set_metainfo({
                            'batch_input_shape': batch_input_shape,
                            'pad_shape': pad_shapes[i]
                        })
                if self.pad_mask and training:
                    self.pad_track_gt_masks(data_samples)

        if training and self.batch_augments is not None:
            for batch_aug in self.batch_augments:
                if self.use_det_processor and training:
                    inputs, data_samples = batch_aug(inputs, data_samples)
                else:
                    # we only support T==1 when using batch augments.
                    # Only yolox need batch_aug, and yolox can only process
                    # (N, C, H, W) shape.
                    # The shape of `inputs` is (N, T, C, H, W), hence, we use
                    # inputs[:, 0] to change the shape to (N, C, H, W).
                    assert inputs.size(1) == 1 and len(
                        data_samples[0]
                    ) == 1, 'Only support the number of sequence images equals to 1 when using batch augment.'  # noqa: E501
                    det_data_samples = [
                        track_data_sample[0]
                        for track_data_sample in data_samples
                    ]
                    aug_inputs, aug_det_samples = batch_aug(
                        inputs[:, 0], det_data_samples)
                    inputs = aug_inputs.unsqueeze(1)
                    for track_data_sample, det_sample in zip(
                            data_samples, aug_det_samples):
                        track_data_sample.video_data_samples = [det_sample]

        # Note: inputs may contain large number of frames, so we must make
        # sure that the mmeory is contiguous for stable forward
        inputs = inputs.contiguous()

        return dict(inputs=inputs, data_samples=data_samples)

    def _get_track_pad_shape(self, data: dict) -> Dict[str, List]:
        """Get the pad_shape of each image based on data and pad_size_divisor.

        Args:
            data (dict): Data sampled from dataloader.

        Returns:
            Dict[str, List]: The shape of padding.
        """
        batch_pad_shape = dict()
        batch_pad_shape = []
        for imgs in data['inputs']:
            # The sequence images in one sample among a batch have the same
            # original shape
            pad_h = int(np.ceil(imgs.shape[-2] /
                                self.pad_size_divisor)) * self.pad_size_divisor
            pad_w = int(np.ceil(imgs.shape[-1] /
                                self.pad_size_divisor)) * self.pad_size_divisor
            pad_shapes = [(pad_h, pad_w)] * imgs.size(0)
            batch_pad_shape.append(pad_shapes)
        return batch_pad_shape

    def pad_track_gt_masks(self,
                           data_samples: Sequence[TrackDataSample]) -> None:
        """Pad gt_masks to shape of batch_input_shape."""
        if 'masks' in data_samples[0][0].get('gt_instances', None):
            for track_data_sample in data_samples:
                for i in range(len(track_data_sample)):
                    det_data_sample = track_data_sample[i]
                    masks = det_data_sample.gt_instances.masks
                    # TODO: whether to use BitmapMasks
                    assert isinstance(masks, BitmapMasks)
                    batch_input_shape = det_data_sample.batch_input_shape
                    det_data_sample.gt_instances.masks = masks.pad(
                        batch_input_shape, pad_val=self.mask_pad_value)


def stack_track_batch(tensors: List[torch.Tensor],
                      pad_size_divisor: int = 0,
                      pad_value: Union[int, float] = 0) -> torch.Tensor:
    """Stack multiple tensors to form a batch and pad the images to the max
    shape use the right bottom padding mode in these images. If
    ``pad_size_divisor > 0``, add padding to ensure the common height and width
    is divisible by ``pad_size_divisor``. The difference between this function
    and ``stack_batch`` in MMEngine is that this function can process batch
    sequence images with shape (N, T, C, H, W).

    Args:
        tensors (List[Tensor]): The input multiple tensors. each is a
            TCHW 4D-tensor. T denotes the number of key/reference frames.
        pad_size_divisor (int): If ``pad_size_divisor > 0``, add padding
            to ensure the common height and width is divisible by
            ``pad_size_divisor``. This depends on the model, and many
            models need a divisibility of 32. Defaults to 0
        pad_value (int, float): The padding value. Defaults to 0

    Returns:
       Tensor: The NTCHW 5D-tensor. N denotes the batch size.
    """
    assert isinstance(tensors, list), \
        f'Expected input type to be list, but got {type(tensors)}'
    assert len(set([tensor.ndim for tensor in tensors])) == 1, \
        f'Expected the dimensions of all tensors must be the same, ' \
        f'but got {[tensor.ndim for tensor in tensors]}'
    assert tensors[0].ndim == 4, f'Expected tensor dimension to be 4, ' \
                                 f'but got {tensors[0].ndim}'
    assert len(set([tensor.shape[0] for tensor in tensors])) == 1, \
        f'Expected the channels of all tensors must be the same, ' \
        f'but got {[tensor.shape[0] for tensor in tensors]}'

    tensor_sizes = [(tensor.shape[-2], tensor.shape[-1]) for tensor in tensors]
    max_size = np.stack(tensor_sizes).max(0)

    if pad_size_divisor > 1:
        # the last two dims are H,W, both subject to divisibility requirement
        max_size = (
            max_size +
            (pad_size_divisor - 1)) // pad_size_divisor * pad_size_divisor

    padded_samples = []
    for tensor in tensors:
        padding_size = [
            0, max_size[-1] - tensor.shape[-1], 0,
            max_size[-2] - tensor.shape[-2]
        ]
        if sum(padding_size) == 0:
            padded_samples.append(tensor)
        else:
            padded_samples.append(F.pad(tensor, padding_size, value=pad_value))

    return torch.stack(padded_samples, dim=0)