Spaces:
Runtime error
Runtime error
File size: 16,656 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import warnings
import zipfile
from collections import OrderedDict, defaultdict
from typing import Dict, List, Optional, Sequence, Tuple, Union
import mmengine
import numpy as np
from mmengine.dist import (all_gather_object, barrier, broadcast_object_list,
is_main_process)
from mmengine.logging import MMLogger
from mmdet.registry import METRICS
from mmdet.structures.mask import encode_mask_results
from ..functional import YTVIS, YTVISeval
from .base_video_metric import BaseVideoMetric, collect_tracking_results
@METRICS.register_module()
class YouTubeVISMetric(BaseVideoMetric):
"""mAP evaluation metrics for the VIS task.
Args:
metric (str | list[str]): Metrics to be evaluated.
Default value is `youtube_vis_ap`.
metric_items (List[str], optional): Metric result names to be
recorded in the evaluation result. Defaults to None.
outfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Defaults to None.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonyms metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Default: None
format_only (bool): If True, only formatting the results to the
official format and not performing evaluation. Defaults to False.
"""
default_prefix: Optional[str] = 'youtube_vis'
def __init__(self,
metric: Union[str, List[str]] = 'youtube_vis_ap',
metric_items: Optional[Sequence[str]] = None,
outfile_prefix: Optional[str] = None,
collect_device: str = 'cpu',
prefix: Optional[str] = None,
format_only: bool = False) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
# vis evaluation metrics
self.metrics = metric if isinstance(metric, list) else [metric]
self.format_only = format_only
allowed_metrics = ['youtube_vis_ap']
for metric in self.metrics:
if metric not in allowed_metrics:
raise KeyError(
f"metric should be 'youtube_vis_ap', but got {metric}.")
self.metric_items = metric_items
self.outfile_prefix = outfile_prefix
self.per_video_res = []
self.categories = []
self._vis_meta_info = defaultdict(list) # record video and image infos
def process_video(self, data_samples):
video_length = len(data_samples)
for frame_id in range(video_length):
result = dict()
img_data_sample = data_samples[frame_id].to_dict()
pred = img_data_sample['pred_track_instances']
video_id = img_data_sample['video_id']
result['img_id'] = img_data_sample['img_id']
result['bboxes'] = pred['bboxes'].cpu().numpy()
result['scores'] = pred['scores'].cpu().numpy()
result['labels'] = pred['labels'].cpu().numpy()
result['instances_id'] = pred['instances_id'].cpu().numpy()
# encode mask to RLE
assert 'masks' in pred, \
'masks must exist in YouTube-VIS metric'
result['masks'] = encode_mask_results(
pred['masks'].detach().cpu().numpy())
# parse gt
gt = dict()
gt['width'] = img_data_sample['ori_shape'][1]
gt['height'] = img_data_sample['ori_shape'][0]
gt['img_id'] = img_data_sample['img_id']
gt['frame_id'] = frame_id
gt['video_id'] = video_id
gt['video_length'] = video_length
if 'instances' in img_data_sample:
gt['anns'] = img_data_sample['instances']
else:
gt['anns'] = dict()
self.per_video_res.append((result, gt))
preds, gts = zip(*self.per_video_res)
# format the results
# we must format gts first to update self._vis_meta_info
gt_results = self._format_one_video_gts(gts)
pred_results = self._format_one_video_preds(preds)
self.per_video_res.clear()
# add converted result to the results list
self.results.append((pred_results, gt_results))
def compute_metrics(self, results: List) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (List): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
# split gt and prediction list
tmp_pred_results, tmp_gt_results = zip(*results)
gt_results = self.format_gts(tmp_gt_results)
pred_results = self.format_preds(tmp_pred_results)
if self.format_only:
self.save_pred_results(pred_results)
return dict()
ytvis = YTVIS(gt_results)
ytvis_dets = ytvis.loadRes(pred_results)
vid_ids = ytvis.getVidIds()
iou_type = metric = 'segm'
eval_results = OrderedDict()
ytvisEval = YTVISeval(ytvis, ytvis_dets, iou_type)
ytvisEval.params.vidIds = vid_ids
ytvisEval.evaluate()
ytvisEval.accumulate()
ytvisEval.summarize()
coco_metric_names = {
'mAP': 0,
'mAP_50': 1,
'mAP_75': 2,
'mAP_s': 3,
'mAP_m': 4,
'mAP_l': 5,
'AR@1': 6,
'AR@10': 7,
'AR@100': 8,
'AR_s@100': 9,
'AR_m@100': 10,
'AR_l@100': 11
}
metric_items = self.metric_items
if metric_items is not None:
for metric_item in metric_items:
if metric_item not in coco_metric_names:
raise KeyError(
f'metric item "{metric_item}" is not supported')
if metric_items is None:
metric_items = [
'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
]
for metric_item in metric_items:
key = f'{metric}_{metric_item}'
val = float(
f'{ytvisEval.stats[coco_metric_names[metric_item]]:.3f}')
eval_results[key] = val
return eval_results
def format_gts(self, gts: Tuple[List]) -> dict:
"""Gather all ground-truth from self.results."""
self.categories = [
dict(id=id + 1, name=name)
for id, name in enumerate(self.dataset_meta['classes'])
]
gt_results = dict(
categories=self.categories,
videos=self._vis_meta_info['videos'],
annotations=[])
for gt_result in gts:
gt_results['annotations'].extend(gt_result)
return gt_results
def format_preds(self, preds: Tuple[List]) -> List:
"""Gather all predictions from self.results."""
pred_results = []
for pred_result in preds:
pred_results.extend(pred_result)
return pred_results
def _format_one_video_preds(self, pred_dicts: Tuple[dict]) -> List:
"""Convert the annotation to the format of YouTube-VIS.
This operation is to make it easier to use the official eval API.
Args:
pred_dicts (Tuple[dict]): Prediction of the dataset.
Returns:
List: The formatted predictions.
"""
# Collate preds scatters (tuple of dict to dict of list)
preds = defaultdict(list)
for pred in pred_dicts:
for key in pred.keys():
preds[key].append(pred[key])
img_infos = self._vis_meta_info['images']
vid_infos = self._vis_meta_info['videos']
inds = [i for i, _ in enumerate(img_infos) if _['frame_id'] == 0]
inds.append(len(img_infos))
json_results = []
video_id = vid_infos[-1]['id']
# collect data for each instances in a video.
collect_data = dict()
for frame_id, (masks, scores, labels, ids) in enumerate(
zip(preds['masks'], preds['scores'], preds['labels'],
preds['instances_id'])):
assert len(masks) == len(labels)
for j, id in enumerate(ids):
if id not in collect_data:
collect_data[id] = dict(
category_ids=[], scores=[], segmentations=dict())
collect_data[id]['category_ids'].append(labels[j])
collect_data[id]['scores'].append(scores[j])
if isinstance(masks[j]['counts'], bytes):
masks[j]['counts'] = masks[j]['counts'].decode()
collect_data[id]['segmentations'][frame_id] = masks[j]
# transform the collected data into official format
for id, id_data in collect_data.items():
output = dict()
output['video_id'] = video_id
output['score'] = np.array(id_data['scores']).mean().item()
# majority voting for sequence category
output['category_id'] = np.bincount(
np.array(id_data['category_ids'])).argmax().item() + 1
output['segmentations'] = []
for frame_id in range(inds[-1] - inds[-2]):
if frame_id in id_data['segmentations']:
output['segmentations'].append(
id_data['segmentations'][frame_id])
else:
output['segmentations'].append(None)
json_results.append(output)
return json_results
def _format_one_video_gts(self, gt_dicts: Tuple[dict]) -> List:
"""Convert the annotation to the format of YouTube-VIS.
This operation is to make it easier to use the official eval API.
Args:
gt_dicts (Tuple[dict]): Ground truth of the dataset.
Returns:
list: The formatted gts.
"""
video_infos = []
image_infos = []
instance_infos = defaultdict(list)
len_videos = dict() # mapping from instance_id to video_length
vis_anns = []
# get video infos
for gt_dict in gt_dicts:
frame_id = gt_dict['frame_id']
video_id = gt_dict['video_id']
img_id = gt_dict['img_id']
image_info = dict(
id=img_id,
width=gt_dict['width'],
height=gt_dict['height'],
frame_id=frame_id,
file_name='')
image_infos.append(image_info)
if frame_id == 0:
video_info = dict(
id=video_id,
width=gt_dict['width'],
height=gt_dict['height'],
file_name='')
video_infos.append(video_info)
for ann in gt_dict['anns']:
label = ann['bbox_label']
bbox = ann['bbox']
instance_id = ann['instance_id']
# update video length
len_videos[instance_id] = gt_dict['video_length']
coco_bbox = [
bbox[0],
bbox[1],
bbox[2] - bbox[0],
bbox[3] - bbox[1],
]
annotation = dict(
video_id=video_id,
frame_id=frame_id,
bbox=coco_bbox,
instance_id=instance_id,
iscrowd=ann.get('ignore_flag', 0),
category_id=int(label) + 1,
area=coco_bbox[2] * coco_bbox[3])
if ann.get('mask', None):
mask = ann['mask']
# area = mask_util.area(mask)
if isinstance(mask, dict) and isinstance(
mask['counts'], bytes):
mask['counts'] = mask['counts'].decode()
annotation['segmentation'] = mask
instance_infos[instance_id].append(annotation)
# update vis meta info
self._vis_meta_info['images'].extend(image_infos)
self._vis_meta_info['videos'].extend(video_infos)
for instance_id, ann_infos in instance_infos.items():
cur_video_len = len_videos[instance_id]
segm = [None] * cur_video_len
bbox = [None] * cur_video_len
area = [None] * cur_video_len
# In the official format, no instances are represented by
# 'None', however, only images with instances are recorded
# in the current annotations, so we need to use 'None' to
# initialize these lists.
for ann_info in ann_infos:
frame_id = ann_info['frame_id']
segm[frame_id] = ann_info['segmentation']
bbox[frame_id] = ann_info['bbox']
area[frame_id] = ann_info['area']
instance = dict(
category_id=ann_infos[0]['category_id'],
segmentations=segm,
bboxes=bbox,
video_id=ann_infos[0]['video_id'],
areas=area,
id=instance_id,
iscrowd=ann_infos[0]['iscrowd'])
vis_anns.append(instance)
return vis_anns
def save_pred_results(self, pred_results: List) -> None:
"""Save the results to a zip file (standard format for YouTube-VIS
Challenge).
Args:
pred_results (list): Testing results of the
dataset.
"""
logger: MMLogger = MMLogger.get_current_instance()
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'results')
else:
outfile_prefix = self.outfile_prefix
mmengine.dump(pred_results, f'{outfile_prefix}.json')
# zip the json file in order to submit to the test server.
zip_file_name = f'{outfile_prefix}.submission_file.zip'
zf = zipfile.ZipFile(zip_file_name, 'w', zipfile.ZIP_DEFLATED)
logger.info(f"zip the 'results.json' into '{zip_file_name}', "
'please submmit the zip file to the test server')
zf.write(f'{outfile_prefix}.json', 'results.json')
zf.close()
def evaluate(self, size: int) -> dict:
"""Evaluate the model performance of the whole dataset after processing
all batches.
Args:
size (int): Length of the entire validation dataset.
Returns:
dict: Evaluation metrics dict on the val dataset. The keys are the
names of the metrics, and the values are corresponding results.
"""
# wait for all processes to complete prediction.
barrier()
if len(self.results) == 0:
warnings.warn(
f'{self.__class__.__name__} got empty `self.results`. Please '
'ensure that the processed results are properly added into '
'`self.results` in `process` method.')
results = collect_tracking_results(self.results, self.collect_device)
# gather seq_info
gathered_seq_info = all_gather_object(self._vis_meta_info['videos'])
all_seq_info = []
for _seq_info in gathered_seq_info:
all_seq_info.extend(_seq_info)
# update self._vis_meta_info
self._vis_meta_info = dict(videos=all_seq_info)
if is_main_process():
_metrics = self.compute_metrics(results) # type: ignore
# Add prefix to metric names
if self.prefix:
_metrics = {
'/'.join((self.prefix, k)): v
for k, v in _metrics.items()
}
metrics = [_metrics]
else:
metrics = [None] # type: ignore
broadcast_object_list(metrics)
# reset the results list
self.results.clear()
# reset the vis_meta_info
self._vis_meta_info.clear()
return metrics[0]
|