Spaces:
Runtime error
Runtime error
File size: 11,654 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) https://github.com/mcordts/cityscapesScripts
# A wrapper of `cityscapesscripts` which supports loading groundtruth
# image from `backend_args`.
import json
import os
import sys
from pathlib import Path
from typing import Optional, Union
import mmcv
import numpy as np
from mmengine.fileio import get
try:
import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa: E501
from cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling import \
CArgs # noqa: E501
from cityscapesscripts.evaluation.instance import Instance
from cityscapesscripts.helpers.csHelpers import (id2label, labels,
writeDict2JSON)
HAS_CITYSCAPESAPI = True
except ImportError:
CArgs = object
HAS_CITYSCAPESAPI = False
def evaluateImgLists(prediction_list: list,
groundtruth_list: list,
args: CArgs,
backend_args: Optional[dict] = None,
dump_matches: bool = False) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.evaluateImgLists``. Support loading
groundtruth image from file backend.
Args:
prediction_list (list): A list of prediction txt file.
groundtruth_list (list): A list of groundtruth image file.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
dump_matches (bool): whether dump matches.json. Defaults to False.
Returns:
dict: The computed metric.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
# determine labels of interest
CSEval.setInstanceLabels(args)
# get dictionary of all ground truth instances
gt_instances = getGtInstances(
groundtruth_list, args, backend_args=backend_args)
# match predictions and ground truth
matches = matchGtWithPreds(prediction_list, groundtruth_list, gt_instances,
args, backend_args)
if dump_matches:
CSEval.writeDict2JSON(matches, 'matches.json')
# evaluate matches
apScores = CSEval.evaluateMatches(matches, args)
# averages
avgDict = CSEval.computeAverages(apScores, args)
# result dict
resDict = CSEval.prepareJSONDataForResults(avgDict, apScores, args)
if args.JSONOutput:
# create output folder if necessary
path = os.path.dirname(args.exportFile)
CSEval.ensurePath(path)
# Write APs to JSON
CSEval.writeDict2JSON(resDict, args.exportFile)
CSEval.printResults(avgDict, args)
return resDict
def matchGtWithPreds(prediction_list: list,
groundtruth_list: list,
gt_instances: dict,
args: CArgs,
backend_args=None):
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.matchGtWithPreds``. Support loading
groundtruth image from file backend.
Args:
prediction_list (list): A list of prediction txt file.
groundtruth_list (list): A list of groundtruth image file.
gt_instances (dict): Groundtruth dict.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
Returns:
dict: The processed prediction and groundtruth result.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
matches: dict = dict()
if not args.quiet:
print(f'Matching {len(prediction_list)} pairs of images...')
count = 0
for (pred, gt) in zip(prediction_list, groundtruth_list):
# Read input files
gt_image = readGTImage(gt, backend_args)
pred_info = readPredInfo(pred)
# Get and filter ground truth instances
unfiltered_instances = gt_instances[gt]
cur_gt_instances_orig = CSEval.filterGtInstances(
unfiltered_instances, args)
# Try to assign all predictions
(cur_gt_instances,
cur_pred_instances) = CSEval.assignGt2Preds(cur_gt_instances_orig,
gt_image, pred_info, args)
# append to global dict
matches[gt] = {}
matches[gt]['groundTruth'] = cur_gt_instances
matches[gt]['prediction'] = cur_pred_instances
count += 1
if not args.quiet:
print(f'\rImages Processed: {count}', end=' ')
sys.stdout.flush()
if not args.quiet:
print('')
return matches
def readGTImage(image_file: Union[str, Path],
backend_args: Optional[dict] = None) -> np.ndarray:
"""Read an image from path.
Same as obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.readGTImage``, but support loading
groundtruth image from file backend.
Args:
image_file (str or Path): Either a str or pathlib.Path.
backend_args (dict, optional): Instantiates the corresponding file
backend. It may contain `backend` key to specify the file
backend. If it contains, the file backend corresponding to this
value will be used and initialized with the remaining values,
otherwise the corresponding file backend will be selected
based on the prefix of the file path. Defaults to None.
Returns:
np.ndarray: The groundtruth image.
"""
img_bytes = get(image_file, backend_args=backend_args)
img = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow')
return img
def readPredInfo(prediction_file: str) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.readPredInfo``.
Args:
prediction_file (str): The prediction txt file.
Returns:
dict: The processed prediction results.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
printError = CSEval.printError
predInfo = {}
if (not os.path.isfile(prediction_file)):
printError(f"Infofile '{prediction_file}' "
'for the predictions not found.')
with open(prediction_file) as f:
for line in f:
splittedLine = line.split(' ')
if len(splittedLine) != 3:
printError('Invalid prediction file. Expected content: '
'relPathPrediction1 labelIDPrediction1 '
'confidencePrediction1')
if os.path.isabs(splittedLine[0]):
printError('Invalid prediction file. First entry in each '
'line must be a relative path.')
filename = os.path.join(
os.path.dirname(prediction_file), splittedLine[0])
imageInfo = {}
imageInfo['labelID'] = int(float(splittedLine[1]))
imageInfo['conf'] = float(splittedLine[2]) # type: ignore
predInfo[filename] = imageInfo
return predInfo
def getGtInstances(groundtruth_list: list,
args: CArgs,
backend_args: Optional[dict] = None) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.getGtInstances``. Support loading
groundtruth image from file backend.
Args:
groundtruth_list (list): A list of groundtruth image file.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
Returns:
dict: The computed metric.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
# if there is a global statistics json, then load it
if (os.path.isfile(args.gtInstancesFile)):
if not args.quiet:
print('Loading ground truth instances from JSON.')
with open(args.gtInstancesFile) as json_file:
gt_instances = json.load(json_file)
# otherwise create it
else:
if (not args.quiet):
print('Creating ground truth instances from png files.')
gt_instances = instances2dict(
groundtruth_list, args, backend_args=backend_args)
writeDict2JSON(gt_instances, args.gtInstancesFile)
return gt_instances
def instances2dict(image_list: list,
args: CArgs,
backend_args: Optional[dict] = None) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.instances2dict``. Support loading
groundtruth image from file backend.
Args:
image_list (list): A list of image file.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
Returns:
dict: The processed groundtruth results.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
imgCount = 0
instanceDict = {}
if not isinstance(image_list, list):
image_list = [image_list]
if not args.quiet:
print(f'Processing {len(image_list)} images...')
for image_name in image_list:
# Load image
img_bytes = get(image_name, backend_args=backend_args)
imgNp = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow')
# Initialize label categories
instances: dict = {}
for label in labels:
instances[label.name] = []
# Loop through all instance ids in instance image
for instanceId in np.unique(imgNp):
instanceObj = Instance(imgNp, instanceId)
instances[id2label[instanceObj.labelID].name].append(
instanceObj.toDict())
instanceDict[image_name] = instances
imgCount += 1
if not args.quiet:
print(f'\rImages Processed: {imgCount}', end=' ')
sys.stdout.flush()
return instanceDict
|