Spaces:
Runtime error
Runtime error
File size: 148,590 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import inspect
import math
import warnings
from typing import List, Optional, Sequence, Tuple, Union
import cv2
import mmcv
import numpy as np
from mmcv.image import imresize
from mmcv.image.geometric import _scale_size
from mmcv.transforms import BaseTransform
from mmcv.transforms import Pad as MMCV_Pad
from mmcv.transforms import RandomFlip as MMCV_RandomFlip
from mmcv.transforms import Resize as MMCV_Resize
from mmcv.transforms.utils import avoid_cache_randomness, cache_randomness
from mmengine.dataset import BaseDataset
from mmengine.utils import is_str
from numpy import random
from mmdet.registry import TRANSFORMS
from mmdet.structures.bbox import HorizontalBoxes, autocast_box_type
from mmdet.structures.mask import BitmapMasks, PolygonMasks
from mmdet.utils import log_img_scale
try:
from imagecorruptions import corrupt
except ImportError:
corrupt = None
try:
import albumentations
from albumentations import Compose
except ImportError:
albumentations = None
Compose = None
Number = Union[int, float]
def _fixed_scale_size(
size: Tuple[int, int],
scale: Union[float, int, tuple],
) -> Tuple[int, int]:
"""Rescale a size by a ratio.
Args:
size (tuple[int]): (w, h).
scale (float | tuple(float)): Scaling factor.
Returns:
tuple[int]: scaled size.
"""
if isinstance(scale, (float, int)):
scale = (scale, scale)
w, h = size
# don't need o.5 offset
return int(w * float(scale[0])), int(h * float(scale[1]))
def rescale_size(old_size: tuple,
scale: Union[float, int, tuple],
return_scale: bool = False) -> tuple:
"""Calculate the new size to be rescaled to.
Args:
old_size (tuple[int]): The old size (w, h) of image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image size.
Returns:
tuple[int]: The new rescaled image size.
"""
w, h = old_size
if isinstance(scale, (float, int)):
if scale <= 0:
raise ValueError(f'Invalid scale {scale}, must be positive.')
scale_factor = scale
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
scale_factor = min(max_long_edge / max(h, w),
max_short_edge / min(h, w))
else:
raise TypeError(
f'Scale must be a number or tuple of int, but got {type(scale)}')
# only change this
new_size = _fixed_scale_size((w, h), scale_factor)
if return_scale:
return new_size, scale_factor
else:
return new_size
def imrescale(
img: np.ndarray,
scale: Union[float, Tuple[int, int]],
return_scale: bool = False,
interpolation: str = 'bilinear',
backend: Optional[str] = None
) -> Union[np.ndarray, Tuple[np.ndarray, float]]:
"""Resize image while keeping the aspect ratio.
Args:
img (ndarray): The input image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image.
interpolation (str): Same as :func:`resize`.
backend (str | None): Same as :func:`resize`.
Returns:
ndarray: The rescaled image.
"""
h, w = img.shape[:2]
new_size, scale_factor = rescale_size((w, h), scale, return_scale=True)
rescaled_img = imresize(
img, new_size, interpolation=interpolation, backend=backend)
if return_scale:
return rescaled_img, scale_factor
else:
return rescaled_img
@TRANSFORMS.register_module()
class Resize(MMCV_Resize):
"""Resize images & bbox & seg.
This transform resizes the input image according to ``scale`` or
``scale_factor``. Bboxes, masks, and seg map are then resized
with the same scale factor.
if ``scale`` and ``scale_factor`` are both set, it will use ``scale`` to
resize.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_seg_map (np.uint8) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes
- gt_masks
- gt_seg_map
Added Keys:
- scale
- scale_factor
- keep_ratio
- homography_matrix
Args:
scale (int or tuple): Images scales for resizing. Defaults to None
scale_factor (float or tuple[float]): Scale factors for resizing.
Defaults to None.
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image. Defaults to False.
clip_object_border (bool): Whether to clip the objects
outside the border of the image. In some dataset like MOT17, the gt
bboxes are allowed to cross the border of images. Therefore, we
don't need to clip the gt bboxes in these cases. Defaults to True.
backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend. Defaults
to 'bilinear'.
"""
def _resize_masks(self, results: dict) -> None:
"""Resize masks with ``results['scale']``"""
if results.get('gt_masks', None) is not None:
if self.keep_ratio:
results['gt_masks'] = results['gt_masks'].rescale(
results['scale'])
else:
results['gt_masks'] = results['gt_masks'].resize(
results['img_shape'])
def _resize_bboxes(self, results: dict) -> None:
"""Resize bounding boxes with ``results['scale_factor']``."""
if results.get('gt_bboxes', None) is not None:
results['gt_bboxes'].rescale_(results['scale_factor'])
if self.clip_object_border:
results['gt_bboxes'].clip_(results['img_shape'])
def _record_homography_matrix(self, results: dict) -> None:
"""Record the homography matrix for the Resize."""
w_scale, h_scale = results['scale_factor']
homography_matrix = np.array(
[[w_scale, 0, 0], [0, h_scale, 0], [0, 0, 1]], dtype=np.float32)
if results.get('homography_matrix', None) is None:
results['homography_matrix'] = homography_matrix
else:
results['homography_matrix'] = homography_matrix @ results[
'homography_matrix']
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to resize images, bounding boxes and semantic
segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
'scale', 'scale_factor', 'height', 'width', and 'keep_ratio' keys
are updated in result dict.
"""
if self.scale:
results['scale'] = self.scale
else:
img_shape = results['img'].shape[:2]
results['scale'] = _scale_size(img_shape[::-1], self.scale_factor)
self._resize_img(results)
self._resize_bboxes(results)
self._resize_masks(results)
self._resize_seg(results)
self._record_homography_matrix(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(scale={self.scale}, '
repr_str += f'scale_factor={self.scale_factor}, '
repr_str += f'keep_ratio={self.keep_ratio}, '
repr_str += f'clip_object_border={self.clip_object_border}), '
repr_str += f'backend={self.backend}), '
repr_str += f'interpolation={self.interpolation})'
return repr_str
@TRANSFORMS.register_module()
class FixScaleResize(Resize):
"""Compared to Resize, FixScaleResize fixes the scaling issue when
`keep_ratio=true`."""
def _resize_img(self, results):
"""Resize images with ``results['scale']``."""
if results.get('img', None) is not None:
if self.keep_ratio:
img, scale_factor = imrescale(
results['img'],
results['scale'],
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
new_h, new_w = img.shape[:2]
h, w = results['img'].shape[:2]
w_scale = new_w / w
h_scale = new_h / h
else:
img, w_scale, h_scale = mmcv.imresize(
results['img'],
results['scale'],
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
results['img'] = img
results['img_shape'] = img.shape[:2]
results['scale_factor'] = (w_scale, h_scale)
results['keep_ratio'] = self.keep_ratio
@TRANSFORMS.register_module()
class ResizeShortestEdge(BaseTransform):
"""Resize the image and mask while keeping the aspect ratio unchanged.
Modified from https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/transforms/augmentation_impl.py#L130 # noqa:E501
This transform attempts to scale the shorter edge to the given
`scale`, as long as the longer edge does not exceed `max_size`.
If `max_size` is reached, then downscale so that the longer
edge does not exceed `max_size`.
Required Keys:
- img
- gt_seg_map (optional)
Modified Keys:
- img
- img_shape
- gt_seg_map (optional))
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
scale (Union[int, Tuple[int, int]]): The target short edge length.
If it's tuple, will select the min value as the short edge length.
max_size (int): The maximum allowed longest edge length.
"""
def __init__(self,
scale: Union[int, Tuple[int, int]],
max_size: Optional[int] = None,
resize_type: str = 'Resize',
**resize_kwargs) -> None:
super().__init__()
self.scale = scale
self.max_size = max_size
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
self.resize = TRANSFORMS.build({'scale': 0, **self.resize_cfg})
def _get_output_shape(
self, img: np.ndarray,
short_edge_length: Union[int, Tuple[int, int]]) -> Tuple[int, int]:
"""Compute the target image shape with the given `short_edge_length`.
Args:
img (np.ndarray): The input image.
short_edge_length (Union[int, Tuple[int, int]]): The target short
edge length. If it's tuple, will select the min value as the
short edge length.
"""
h, w = img.shape[:2]
if isinstance(short_edge_length, int):
size = short_edge_length * 1.0
elif isinstance(short_edge_length, tuple):
size = min(short_edge_length) * 1.0
scale = size / min(h, w)
if h < w:
new_h, new_w = size, scale * w
else:
new_h, new_w = scale * h, size
if self.max_size and max(new_h, new_w) > self.max_size:
scale = self.max_size * 1.0 / max(new_h, new_w)
new_h *= scale
new_w *= scale
new_h = int(new_h + 0.5)
new_w = int(new_w + 0.5)
return new_w, new_h
def transform(self, results: dict) -> dict:
self.resize.scale = self._get_output_shape(results['img'], self.scale)
return self.resize(results)
@TRANSFORMS.register_module()
class FixShapeResize(Resize):
"""Resize images & bbox & seg to the specified size.
This transform resizes the input image according to ``width`` and
``height``. Bboxes, masks, and seg map are then resized
with the same parameters.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_seg_map (np.uint8) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes
- gt_masks
- gt_seg_map
Added Keys:
- scale
- scale_factor
- keep_ratio
- homography_matrix
Args:
width (int): width for resizing.
height (int): height for resizing.
Defaults to None.
pad_val (Number | dict[str, Number], optional): Padding value for if
the pad_mode is "constant". If it is a single number, the value
to pad the image is the number and to pad the semantic
segmentation map is 255. If it is a dict, it should have the
following keys:
- img: The value to pad the image.
- seg: The value to pad the semantic segmentation map.
Defaults to dict(img=0, seg=255).
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image. Defaults to False.
clip_object_border (bool): Whether to clip the objects
outside the border of the image. In some dataset like MOT17, the gt
bboxes are allowed to cross the border of images. Therefore, we
don't need to clip the gt bboxes in these cases. Defaults to True.
backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend. Defaults
to 'bilinear'.
"""
def __init__(self,
width: int,
height: int,
pad_val: Union[Number, dict] = dict(img=0, seg=255),
keep_ratio: bool = False,
clip_object_border: bool = True,
backend: str = 'cv2',
interpolation: str = 'bilinear') -> None:
assert width is not None and height is not None, (
'`width` and'
'`height` can not be `None`')
self.width = width
self.height = height
self.scale = (width, height)
self.backend = backend
self.interpolation = interpolation
self.keep_ratio = keep_ratio
self.clip_object_border = clip_object_border
if keep_ratio is True:
# padding to the fixed size when keep_ratio=True
self.pad_transform = Pad(size=self.scale, pad_val=pad_val)
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to resize images, bounding boxes and semantic
segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
'scale', 'scale_factor', 'height', 'width', and 'keep_ratio' keys
are updated in result dict.
"""
img = results['img']
h, w = img.shape[:2]
if self.keep_ratio:
scale_factor = min(self.width / w, self.height / h)
results['scale_factor'] = (scale_factor, scale_factor)
real_w, real_h = int(w * float(scale_factor) +
0.5), int(h * float(scale_factor) + 0.5)
img, scale_factor = mmcv.imrescale(
results['img'], (real_w, real_h),
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
# the w_scale and h_scale has minor difference
# a real fix should be done in the mmcv.imrescale in the future
results['img'] = img
results['img_shape'] = img.shape[:2]
results['keep_ratio'] = self.keep_ratio
results['scale'] = (real_w, real_h)
else:
results['scale'] = (self.width, self.height)
results['scale_factor'] = (self.width / w, self.height / h)
super()._resize_img(results)
self._resize_bboxes(results)
self._resize_masks(results)
self._resize_seg(results)
self._record_homography_matrix(results)
if self.keep_ratio:
self.pad_transform(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(width={self.width}, height={self.height}, '
repr_str += f'keep_ratio={self.keep_ratio}, '
repr_str += f'clip_object_border={self.clip_object_border}), '
repr_str += f'backend={self.backend}), '
repr_str += f'interpolation={self.interpolation})'
return repr_str
@TRANSFORMS.register_module()
class RandomFlip(MMCV_RandomFlip):
"""Flip the image & bbox & mask & segmentation map. Added or Updated keys:
flip, flip_direction, img, gt_bboxes, and gt_seg_map. There are 3 flip
modes:
- ``prob`` is float, ``direction`` is string: the image will be
``direction``ly flipped with probability of ``prob`` .
E.g., ``prob=0.5``, ``direction='horizontal'``,
then image will be horizontally flipped with probability of 0.5.
- ``prob`` is float, ``direction`` is list of string: the image will
be ``direction[i]``ly flipped with probability of
``prob/len(direction)``.
E.g., ``prob=0.5``, ``direction=['horizontal', 'vertical']``,
then image will be horizontally flipped with probability of 0.25,
vertically with probability of 0.25.
- ``prob`` is list of float, ``direction`` is list of string:
given ``len(prob) == len(direction)``, the image will
be ``direction[i]``ly flipped with probability of ``prob[i]``.
E.g., ``prob=[0.3, 0.5]``, ``direction=['horizontal',
'vertical']``, then image will be horizontally flipped with
probability of 0.3, vertically with probability of 0.5.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_seg_map (np.uint8) (optional)
Modified Keys:
- img
- gt_bboxes
- gt_masks
- gt_seg_map
Added Keys:
- flip
- flip_direction
- homography_matrix
Args:
prob (float | list[float], optional): The flipping probability.
Defaults to None.
direction(str | list[str]): The flipping direction. Options
If input is a list, the length must equal ``prob``. Each
element in ``prob`` indicates the flip probability of
corresponding direction. Defaults to 'horizontal'.
"""
def _record_homography_matrix(self, results: dict) -> None:
"""Record the homography matrix for the RandomFlip."""
cur_dir = results['flip_direction']
h, w = results['img'].shape[:2]
if cur_dir == 'horizontal':
homography_matrix = np.array([[-1, 0, w], [0, 1, 0], [0, 0, 1]],
dtype=np.float32)
elif cur_dir == 'vertical':
homography_matrix = np.array([[1, 0, 0], [0, -1, h], [0, 0, 1]],
dtype=np.float32)
elif cur_dir == 'diagonal':
homography_matrix = np.array([[-1, 0, w], [0, -1, h], [0, 0, 1]],
dtype=np.float32)
else:
homography_matrix = np.eye(3, dtype=np.float32)
if results.get('homography_matrix', None) is None:
results['homography_matrix'] = homography_matrix
else:
results['homography_matrix'] = homography_matrix @ results[
'homography_matrix']
@autocast_box_type()
def _flip(self, results: dict) -> None:
"""Flip images, bounding boxes, and semantic segmentation map."""
# flip image
results['img'] = mmcv.imflip(
results['img'], direction=results['flip_direction'])
img_shape = results['img'].shape[:2]
# flip bboxes
if results.get('gt_bboxes', None) is not None:
results['gt_bboxes'].flip_(img_shape, results['flip_direction'])
# flip masks
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'].flip(
results['flip_direction'])
# flip segs
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = mmcv.imflip(
results['gt_seg_map'], direction=results['flip_direction'])
# record homography matrix for flip
self._record_homography_matrix(results)
@TRANSFORMS.register_module()
class RandomShift(BaseTransform):
"""Shift the image and box given shift pixels and probability.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32])
- gt_bboxes_labels (np.int64)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- img
- gt_bboxes
- gt_bboxes_labels
- gt_ignore_flags (bool) (optional)
Args:
prob (float): Probability of shifts. Defaults to 0.5.
max_shift_px (int): The max pixels for shifting. Defaults to 32.
filter_thr_px (int): The width and height threshold for filtering.
The bbox and the rest of the targets below the width and
height threshold will be filtered. Defaults to 1.
"""
def __init__(self,
prob: float = 0.5,
max_shift_px: int = 32,
filter_thr_px: int = 1) -> None:
assert 0 <= prob <= 1
assert max_shift_px >= 0
self.prob = prob
self.max_shift_px = max_shift_px
self.filter_thr_px = int(filter_thr_px)
@cache_randomness
def _random_prob(self) -> float:
return random.uniform(0, 1)
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to random shift images, bounding boxes.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Shift results.
"""
if self._random_prob() < self.prob:
img_shape = results['img'].shape[:2]
random_shift_x = random.randint(-self.max_shift_px,
self.max_shift_px)
random_shift_y = random.randint(-self.max_shift_px,
self.max_shift_px)
new_x = max(0, random_shift_x)
ori_x = max(0, -random_shift_x)
new_y = max(0, random_shift_y)
ori_y = max(0, -random_shift_y)
# TODO: support mask and semantic segmentation maps.
bboxes = results['gt_bboxes'].clone()
bboxes.translate_([random_shift_x, random_shift_y])
# clip border
bboxes.clip_(img_shape)
# remove invalid bboxes
valid_inds = (bboxes.widths > self.filter_thr_px).numpy() & (
bboxes.heights > self.filter_thr_px).numpy()
# If the shift does not contain any gt-bbox area, skip this
# image.
if not valid_inds.any():
return results
bboxes = bboxes[valid_inds]
results['gt_bboxes'] = bboxes
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
valid_inds]
if results.get('gt_ignore_flags', None) is not None:
results['gt_ignore_flags'] = \
results['gt_ignore_flags'][valid_inds]
# shift img
img = results['img']
new_img = np.zeros_like(img)
img_h, img_w = img.shape[:2]
new_h = img_h - np.abs(random_shift_y)
new_w = img_w - np.abs(random_shift_x)
new_img[new_y:new_y + new_h, new_x:new_x + new_w] \
= img[ori_y:ori_y + new_h, ori_x:ori_x + new_w]
results['img'] = new_img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob}, '
repr_str += f'max_shift_px={self.max_shift_px}, '
repr_str += f'filter_thr_px={self.filter_thr_px})'
return repr_str
@TRANSFORMS.register_module()
class Pad(MMCV_Pad):
"""Pad the image & segmentation map.
There are three padding modes: (1) pad to a fixed size and (2) pad to the
minimum size that is divisible by some number. and (3)pad to square. Also,
pad to square and pad to the minimum size can be used as the same time.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_seg_map (np.uint8) (optional)
Modified Keys:
- img
- img_shape
- gt_masks
- gt_seg_map
Added Keys:
- pad_shape
- pad_fixed_size
- pad_size_divisor
Args:
size (tuple, optional): Fixed padding size.
Expected padding shape (width, height). Defaults to None.
size_divisor (int, optional): The divisor of padded size. Defaults to
None.
pad_to_square (bool): Whether to pad the image into a square.
Currently only used for YOLOX. Defaults to False.
pad_val (Number | dict[str, Number], optional) - Padding value for if
the pad_mode is "constant". If it is a single number, the value
to pad the image is the number and to pad the semantic
segmentation map is 255. If it is a dict, it should have the
following keys:
- img: The value to pad the image.
- seg: The value to pad the semantic segmentation map.
Defaults to dict(img=0, seg=255).
padding_mode (str): Type of padding. Should be: constant, edge,
reflect or symmetric. Defaults to 'constant'.
- constant: pads with a constant value, this value is specified
with pad_val.
- edge: pads with the last value at the edge of the image.
- reflect: pads with reflection of image without repeating the last
value on the edge. For example, padding [1, 2, 3, 4] with 2
elements on both sides in reflect mode will result in
[3, 2, 1, 2, 3, 4, 3, 2].
- symmetric: pads with reflection of image repeating the last value
on the edge. For example, padding [1, 2, 3, 4] with 2 elements on
both sides in symmetric mode will result in
[2, 1, 1, 2, 3, 4, 4, 3]
"""
def _pad_masks(self, results: dict) -> None:
"""Pad masks according to ``results['pad_shape']``."""
if results.get('gt_masks', None) is not None:
pad_val = self.pad_val.get('masks', 0)
pad_shape = results['pad_shape'][:2]
results['gt_masks'] = results['gt_masks'].pad(
pad_shape, pad_val=pad_val)
def transform(self, results: dict) -> dict:
"""Call function to pad images, masks, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
self._pad_img(results)
self._pad_seg(results)
self._pad_masks(results)
return results
@TRANSFORMS.register_module()
class RandomCrop(BaseTransform):
"""Random crop the image & bboxes & masks.
The absolute ``crop_size`` is sampled based on ``crop_type`` and
``image_size``, then the cropped results are generated.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_ignore_flags (bool) (optional)
- gt_seg_map (np.uint8) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_masks (optional)
- gt_ignore_flags (optional)
- gt_seg_map (optional)
- gt_instances_ids (options, only used in MOT/VIS)
Added Keys:
- homography_matrix
Args:
crop_size (tuple): The relative ratio or absolute pixels of
(width, height).
crop_type (str, optional): One of "relative_range", "relative",
"absolute", "absolute_range". "relative" randomly crops
(h * crop_size[0], w * crop_size[1]) part from an input of size
(h, w). "relative_range" uniformly samples relative crop size from
range [crop_size[0], 1] and [crop_size[1], 1] for height and width
respectively. "absolute" crops from an input with absolute size
(crop_size[0], crop_size[1]). "absolute_range" uniformly samples
crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
in range [crop_size[0], min(w, crop_size[1])].
Defaults to "absolute".
allow_negative_crop (bool, optional): Whether to allow a crop that does
not contain any bbox area. Defaults to False.
recompute_bbox (bool, optional): Whether to re-compute the boxes based
on cropped instance masks. Defaults to False.
bbox_clip_border (bool, optional): Whether clip the objects outside
the border of the image. Defaults to True.
Note:
- If the image is smaller than the absolute crop size, return the
original image.
- The keys for bboxes, labels and masks must be aligned. That is,
``gt_bboxes`` corresponds to ``gt_labels`` and ``gt_masks``, and
``gt_bboxes_ignore`` corresponds to ``gt_labels_ignore`` and
``gt_masks_ignore``.
- If the crop does not contain any gt-bbox region and
``allow_negative_crop`` is set to False, skip this image.
"""
def __init__(self,
crop_size: tuple,
crop_type: str = 'absolute',
allow_negative_crop: bool = False,
recompute_bbox: bool = False,
bbox_clip_border: bool = True) -> None:
if crop_type not in [
'relative_range', 'relative', 'absolute', 'absolute_range'
]:
raise ValueError(f'Invalid crop_type {crop_type}.')
if crop_type in ['absolute', 'absolute_range']:
assert crop_size[0] > 0 and crop_size[1] > 0
assert isinstance(crop_size[0], int) and isinstance(
crop_size[1], int)
if crop_type == 'absolute_range':
assert crop_size[0] <= crop_size[1]
else:
assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1
self.crop_size = crop_size
self.crop_type = crop_type
self.allow_negative_crop = allow_negative_crop
self.bbox_clip_border = bbox_clip_border
self.recompute_bbox = recompute_bbox
def _crop_data(self, results: dict, crop_size: Tuple[int, int],
allow_negative_crop: bool) -> Union[dict, None]:
"""Function to randomly crop images, bounding boxes, masks, semantic
segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
crop_size (Tuple[int, int]): Expected absolute size after
cropping, (h, w).
allow_negative_crop (bool): Whether to allow a crop that does not
contain any bbox area.
Returns:
results (Union[dict, None]): Randomly cropped results, 'img_shape'
key in result dict is updated according to crop size. None will
be returned when there is no valid bbox after cropping.
"""
assert crop_size[0] > 0 and crop_size[1] > 0
img = results['img']
margin_h = max(img.shape[0] - crop_size[0], 0)
margin_w = max(img.shape[1] - crop_size[1], 0)
offset_h, offset_w = self._rand_offset((margin_h, margin_w))
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
# Record the homography matrix for the RandomCrop
homography_matrix = np.array(
[[1, 0, -offset_w], [0, 1, -offset_h], [0, 0, 1]],
dtype=np.float32)
if results.get('homography_matrix', None) is None:
results['homography_matrix'] = homography_matrix
else:
results['homography_matrix'] = homography_matrix @ results[
'homography_matrix']
# crop the image
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
img_shape = img.shape
results['img'] = img
results['img_shape'] = img_shape[:2]
# crop bboxes accordingly and clip to the image boundary
if results.get('gt_bboxes', None) is not None:
bboxes = results['gt_bboxes']
bboxes.translate_([-offset_w, -offset_h])
if self.bbox_clip_border:
bboxes.clip_(img_shape[:2])
valid_inds = bboxes.is_inside(img_shape[:2]).numpy()
# If the crop does not contain any gt-bbox area and
# allow_negative_crop is False, skip this image.
if (not valid_inds.any() and not allow_negative_crop):
return None
results['gt_bboxes'] = bboxes[valid_inds]
if results.get('gt_ignore_flags', None) is not None:
results['gt_ignore_flags'] = \
results['gt_ignore_flags'][valid_inds]
if results.get('gt_bboxes_labels', None) is not None:
results['gt_bboxes_labels'] = \
results['gt_bboxes_labels'][valid_inds]
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'][
valid_inds.nonzero()[0]].crop(
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
if self.recompute_bbox:
results['gt_bboxes'] = results['gt_masks'].get_bboxes(
type(results['gt_bboxes']))
# We should remove the instance ids corresponding to invalid boxes.
if results.get('gt_instances_ids', None) is not None:
results['gt_instances_ids'] = \
results['gt_instances_ids'][valid_inds]
# crop semantic seg
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = results['gt_seg_map'][crop_y1:crop_y2,
crop_x1:crop_x2]
return results
@cache_randomness
def _rand_offset(self, margin: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generate crop offset.
Args:
margin (Tuple[int, int]): The upper bound for the offset generated
randomly.
Returns:
Tuple[int, int]: The random offset for the crop.
"""
margin_h, margin_w = margin
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
return offset_h, offset_w
@cache_randomness
def _get_crop_size(self, image_size: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generates the absolute crop size based on `crop_type` and
`image_size`.
Args:
image_size (Tuple[int, int]): (h, w).
Returns:
crop_size (Tuple[int, int]): (crop_h, crop_w) in absolute pixels.
"""
h, w = image_size
if self.crop_type == 'absolute':
return min(self.crop_size[1], h), min(self.crop_size[0], w)
elif self.crop_type == 'absolute_range':
crop_h = np.random.randint(
min(h, self.crop_size[0]),
min(h, self.crop_size[1]) + 1)
crop_w = np.random.randint(
min(w, self.crop_size[0]),
min(w, self.crop_size[1]) + 1)
return crop_h, crop_w
elif self.crop_type == 'relative':
crop_w, crop_h = self.crop_size
return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
else:
# 'relative_range'
crop_size = np.asarray(self.crop_size, dtype=np.float32)
crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size)
return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""Transform function to randomly crop images, bounding boxes, masks,
semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
results (Union[dict, None]): Randomly cropped results, 'img_shape'
key in result dict is updated according to crop size. None will
be returned when there is no valid bbox after cropping.
"""
image_size = results['img'].shape[:2]
crop_size = self._get_crop_size(image_size)
results = self._crop_data(results, crop_size, self.allow_negative_crop)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(crop_size={self.crop_size}, '
repr_str += f'crop_type={self.crop_type}, '
repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
repr_str += f'recompute_bbox={self.recompute_bbox}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@TRANSFORMS.register_module()
class SegRescale(BaseTransform):
"""Rescale semantic segmentation maps.
This transform rescale the ``gt_seg_map`` according to ``scale_factor``.
Required Keys:
- gt_seg_map
Modified Keys:
- gt_seg_map
Args:
scale_factor (float): The scale factor of the final output. Defaults
to 1.
backend (str): Image rescale backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
"""
def __init__(self, scale_factor: float = 1, backend: str = 'cv2') -> None:
self.scale_factor = scale_factor
self.backend = backend
def transform(self, results: dict) -> dict:
"""Transform function to scale the semantic segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with semantic segmentation map scaled.
"""
if self.scale_factor != 1:
results['gt_seg_map'] = mmcv.imrescale(
results['gt_seg_map'],
self.scale_factor,
interpolation='nearest',
backend=self.backend)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(scale_factor={self.scale_factor}, '
repr_str += f'backend={self.backend})'
return repr_str
@TRANSFORMS.register_module()
class PhotoMetricDistortion(BaseTransform):
"""Apply photometric distortion to image sequentially, every transformation
is applied with a probability of 0.5. The position of random contrast is in
second or second to last.
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
8. randomly swap channels
Required Keys:
- img (np.uint8)
Modified Keys:
- img (np.float32)
Args:
brightness_delta (int): delta of brightness.
contrast_range (sequence): range of contrast.
saturation_range (sequence): range of saturation.
hue_delta (int): delta of hue.
"""
def __init__(self,
brightness_delta: int = 32,
contrast_range: Sequence[Number] = (0.5, 1.5),
saturation_range: Sequence[Number] = (0.5, 1.5),
hue_delta: int = 18) -> None:
self.brightness_delta = brightness_delta
self.contrast_lower, self.contrast_upper = contrast_range
self.saturation_lower, self.saturation_upper = saturation_range
self.hue_delta = hue_delta
@cache_randomness
def _random_flags(self) -> Sequence[Number]:
mode = random.randint(2)
brightness_flag = random.randint(2)
contrast_flag = random.randint(2)
saturation_flag = random.randint(2)
hue_flag = random.randint(2)
swap_flag = random.randint(2)
delta_value = random.uniform(-self.brightness_delta,
self.brightness_delta)
alpha_value = random.uniform(self.contrast_lower, self.contrast_upper)
saturation_value = random.uniform(self.saturation_lower,
self.saturation_upper)
hue_value = random.uniform(-self.hue_delta, self.hue_delta)
swap_value = random.permutation(3)
return (mode, brightness_flag, contrast_flag, saturation_flag,
hue_flag, swap_flag, delta_value, alpha_value,
saturation_value, hue_value, swap_value)
def transform(self, results: dict) -> dict:
"""Transform function to perform photometric distortion on images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images distorted.
"""
assert 'img' in results, '`img` is not found in results'
img = results['img']
img = img.astype(np.float32)
(mode, brightness_flag, contrast_flag, saturation_flag, hue_flag,
swap_flag, delta_value, alpha_value, saturation_value, hue_value,
swap_value) = self._random_flags()
# random brightness
if brightness_flag:
img += delta_value
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
if mode == 1:
if contrast_flag:
img *= alpha_value
# convert color from BGR to HSV
img = mmcv.bgr2hsv(img)
# random saturation
if saturation_flag:
img[..., 1] *= saturation_value
# For image(type=float32), after convert bgr to hsv by opencv,
# valid saturation value range is [0, 1]
if saturation_value > 1:
img[..., 1] = img[..., 1].clip(0, 1)
# random hue
if hue_flag:
img[..., 0] += hue_value
img[..., 0][img[..., 0] > 360] -= 360
img[..., 0][img[..., 0] < 0] += 360
# convert color from HSV to BGR
img = mmcv.hsv2bgr(img)
# random contrast
if mode == 0:
if contrast_flag:
img *= alpha_value
# randomly swap channels
if swap_flag:
img = img[..., swap_value]
results['img'] = img
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(brightness_delta={self.brightness_delta}, '
repr_str += 'contrast_range='
repr_str += f'{(self.contrast_lower, self.contrast_upper)}, '
repr_str += 'saturation_range='
repr_str += f'{(self.saturation_lower, self.saturation_upper)}, '
repr_str += f'hue_delta={self.hue_delta})'
return repr_str
@TRANSFORMS.register_module()
class Expand(BaseTransform):
"""Random expand the image & bboxes & masks & segmentation map.
Randomly place the original image on a canvas of ``ratio`` x original image
size filled with mean values. The ratio is in the range of ratio_range.
Required Keys:
- img
- img_shape
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_seg_map (np.uint8) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes
- gt_masks
- gt_seg_map
Args:
mean (sequence): mean value of dataset.
to_rgb (bool): if need to convert the order of mean to align with RGB.
ratio_range (sequence)): range of expand ratio.
seg_ignore_label (int): label of ignore segmentation map.
prob (float): probability of applying this transformation
"""
def __init__(self,
mean: Sequence[Number] = (0, 0, 0),
to_rgb: bool = True,
ratio_range: Sequence[Number] = (1, 4),
seg_ignore_label: int = None,
prob: float = 0.5) -> None:
self.to_rgb = to_rgb
self.ratio_range = ratio_range
if to_rgb:
self.mean = mean[::-1]
else:
self.mean = mean
self.min_ratio, self.max_ratio = ratio_range
self.seg_ignore_label = seg_ignore_label
self.prob = prob
@cache_randomness
def _random_prob(self) -> float:
return random.uniform(0, 1)
@cache_randomness
def _random_ratio(self) -> float:
return random.uniform(self.min_ratio, self.max_ratio)
@cache_randomness
def _random_left_top(self, ratio: float, h: int,
w: int) -> Tuple[int, int]:
left = int(random.uniform(0, w * ratio - w))
top = int(random.uniform(0, h * ratio - h))
return left, top
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to expand images, bounding boxes, masks,
segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images, bounding boxes, masks, segmentation
map expanded.
"""
if self._random_prob() > self.prob:
return results
assert 'img' in results, '`img` is not found in results'
img = results['img']
h, w, c = img.shape
ratio = self._random_ratio()
# speedup expand when meets large image
if np.all(self.mean == self.mean[0]):
expand_img = np.empty((int(h * ratio), int(w * ratio), c),
img.dtype)
expand_img.fill(self.mean[0])
else:
expand_img = np.full((int(h * ratio), int(w * ratio), c),
self.mean,
dtype=img.dtype)
left, top = self._random_left_top(ratio, h, w)
expand_img[top:top + h, left:left + w] = img
results['img'] = expand_img
results['img_shape'] = expand_img.shape[:2]
# expand bboxes
if results.get('gt_bboxes', None) is not None:
results['gt_bboxes'].translate_([left, top])
# expand masks
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'].expand(
int(h * ratio), int(w * ratio), top, left)
# expand segmentation map
if results.get('gt_seg_map', None) is not None:
gt_seg = results['gt_seg_map']
expand_gt_seg = np.full((int(h * ratio), int(w * ratio)),
self.seg_ignore_label,
dtype=gt_seg.dtype)
expand_gt_seg[top:top + h, left:left + w] = gt_seg
results['gt_seg_map'] = expand_gt_seg
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'seg_ignore_label={self.seg_ignore_label}, '
repr_str += f'prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class MinIoURandomCrop(BaseTransform):
"""Random crop the image & bboxes & masks & segmentation map, the cropped
patches have minimum IoU requirement with original image & bboxes & masks.
& segmentation map, the IoU threshold is randomly selected from min_ious.
Required Keys:
- img
- img_shape
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_ignore_flags (bool) (optional)
- gt_seg_map (np.uint8) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes
- gt_bboxes_labels
- gt_masks
- gt_ignore_flags
- gt_seg_map
Args:
min_ious (Sequence[float]): minimum IoU threshold for all intersections
with bounding boxes.
min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w,
where a >= min_crop_size).
bbox_clip_border (bool, optional): Whether clip the objects outside
the border of the image. Defaults to True.
"""
def __init__(self,
min_ious: Sequence[float] = (0.1, 0.3, 0.5, 0.7, 0.9),
min_crop_size: float = 0.3,
bbox_clip_border: bool = True) -> None:
self.min_ious = min_ious
self.sample_mode = (1, *min_ious, 0)
self.min_crop_size = min_crop_size
self.bbox_clip_border = bbox_clip_border
@cache_randomness
def _random_mode(self) -> Number:
return random.choice(self.sample_mode)
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to crop images and bounding boxes with minimum
IoU constraint.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images and bounding boxes cropped, \
'img_shape' key is updated.
"""
assert 'img' in results, '`img` is not found in results'
assert 'gt_bboxes' in results, '`gt_bboxes` is not found in results'
img = results['img']
boxes = results['gt_bboxes']
h, w, c = img.shape
while True:
mode = self._random_mode()
self.mode = mode
if mode == 1:
return results
min_iou = self.mode
for i in range(50):
new_w = random.uniform(self.min_crop_size * w, w)
new_h = random.uniform(self.min_crop_size * h, h)
# h / w in [0.5, 2]
if new_h / new_w < 0.5 or new_h / new_w > 2:
continue
left = random.uniform(w - new_w)
top = random.uniform(h - new_h)
patch = np.array(
(int(left), int(top), int(left + new_w), int(top + new_h)))
# Line or point crop is not allowed
if patch[2] == patch[0] or patch[3] == patch[1]:
continue
overlaps = boxes.overlaps(
HorizontalBoxes(patch.reshape(-1, 4).astype(np.float32)),
boxes).numpy().reshape(-1)
if len(overlaps) > 0 and overlaps.min() < min_iou:
continue
# center of boxes should inside the crop img
# only adjust boxes and instance masks when the gt is not empty
if len(overlaps) > 0:
# adjust boxes
def is_center_of_bboxes_in_patch(boxes, patch):
centers = boxes.centers.numpy()
mask = ((centers[:, 0] > patch[0]) *
(centers[:, 1] > patch[1]) *
(centers[:, 0] < patch[2]) *
(centers[:, 1] < patch[3]))
return mask
mask = is_center_of_bboxes_in_patch(boxes, patch)
if not mask.any():
continue
if results.get('gt_bboxes', None) is not None:
boxes = results['gt_bboxes']
mask = is_center_of_bboxes_in_patch(boxes, patch)
boxes = boxes[mask]
boxes.translate_([-patch[0], -patch[1]])
if self.bbox_clip_border:
boxes.clip_(
[patch[3] - patch[1], patch[2] - patch[0]])
results['gt_bboxes'] = boxes
# ignore_flags
if results.get('gt_ignore_flags', None) is not None:
results['gt_ignore_flags'] = \
results['gt_ignore_flags'][mask]
# labels
if results.get('gt_bboxes_labels', None) is not None:
results['gt_bboxes_labels'] = results[
'gt_bboxes_labels'][mask]
# mask fields
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'][
mask.nonzero()[0]].crop(patch)
# adjust the img no matter whether the gt is empty before crop
img = img[patch[1]:patch[3], patch[0]:patch[2]]
results['img'] = img
results['img_shape'] = img.shape[:2]
# seg fields
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = results['gt_seg_map'][
patch[1]:patch[3], patch[0]:patch[2]]
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(min_ious={self.min_ious}, '
repr_str += f'min_crop_size={self.min_crop_size}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@TRANSFORMS.register_module()
class Corrupt(BaseTransform):
"""Corruption augmentation.
Corruption transforms implemented based on
`imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_.
Required Keys:
- img (np.uint8)
Modified Keys:
- img (np.uint8)
Args:
corruption (str): Corruption name.
severity (int): The severity of corruption. Defaults to 1.
"""
def __init__(self, corruption: str, severity: int = 1) -> None:
self.corruption = corruption
self.severity = severity
def transform(self, results: dict) -> dict:
"""Call function to corrupt image.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images corrupted.
"""
if corrupt is None:
raise RuntimeError('imagecorruptions is not installed')
results['img'] = corrupt(
results['img'].astype(np.uint8),
corruption_name=self.corruption,
severity=self.severity)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(corruption={self.corruption}, '
repr_str += f'severity={self.severity})'
return repr_str
@TRANSFORMS.register_module()
@avoid_cache_randomness
class Albu(BaseTransform):
"""Albumentation augmentation.
Adds custom transformations from Albumentations library.
Please, visit `https://albumentations.readthedocs.io`
to get more information.
Required Keys:
- img (np.uint8)
- gt_bboxes (HorizontalBoxes[torch.float32]) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
Modified Keys:
- img (np.uint8)
- gt_bboxes (HorizontalBoxes[torch.float32]) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- img_shape (tuple)
An example of ``transforms`` is as followed:
.. code-block::
[
dict(
type='ShiftScaleRotate',
shift_limit=0.0625,
scale_limit=0.0,
rotate_limit=0,
interpolation=1,
p=0.5),
dict(
type='RandomBrightnessContrast',
brightness_limit=[0.1, 0.3],
contrast_limit=[0.1, 0.3],
p=0.2),
dict(type='ChannelShuffle', p=0.1),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.1),
]
Args:
transforms (list[dict]): A list of albu transformations
bbox_params (dict, optional): Bbox_params for albumentation `Compose`
keymap (dict, optional): Contains
{'input key':'albumentation-style key'}
skip_img_without_anno (bool): Whether to skip the image if no ann left
after aug. Defaults to False.
"""
def __init__(self,
transforms: List[dict],
bbox_params: Optional[dict] = None,
keymap: Optional[dict] = None,
skip_img_without_anno: bool = False) -> None:
if Compose is None:
raise RuntimeError('albumentations is not installed')
# Args will be modified later, copying it will be safer
transforms = copy.deepcopy(transforms)
if bbox_params is not None:
bbox_params = copy.deepcopy(bbox_params)
if keymap is not None:
keymap = copy.deepcopy(keymap)
self.transforms = transforms
self.filter_lost_elements = False
self.skip_img_without_anno = skip_img_without_anno
# A simple workaround to remove masks without boxes
if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params
and 'filter_lost_elements' in bbox_params):
self.filter_lost_elements = True
self.origin_label_fields = bbox_params['label_fields']
bbox_params['label_fields'] = ['idx_mapper']
del bbox_params['filter_lost_elements']
self.bbox_params = (
self.albu_builder(bbox_params) if bbox_params else None)
self.aug = Compose([self.albu_builder(t) for t in self.transforms],
bbox_params=self.bbox_params)
if not keymap:
self.keymap_to_albu = {
'img': 'image',
'gt_masks': 'masks',
'gt_bboxes': 'bboxes'
}
else:
self.keymap_to_albu = keymap
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}
def albu_builder(self, cfg: dict) -> albumentations:
"""Import a module from albumentations.
It inherits some of :func:`build_from_cfg` logic.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
Returns:
obj: The constructed object.
"""
assert isinstance(cfg, dict) and 'type' in cfg
args = cfg.copy()
obj_type = args.pop('type')
if is_str(obj_type):
if albumentations is None:
raise RuntimeError('albumentations is not installed')
obj_cls = getattr(albumentations, obj_type)
elif inspect.isclass(obj_type):
obj_cls = obj_type
else:
raise TypeError(
f'type must be a str or valid type, but got {type(obj_type)}')
if 'transforms' in args:
args['transforms'] = [
self.albu_builder(transform)
for transform in args['transforms']
]
return obj_cls(**args)
@staticmethod
def mapper(d: dict, keymap: dict) -> dict:
"""Dictionary mapper. Renames keys according to keymap provided.
Args:
d (dict): old dict
keymap (dict): {'old_key':'new_key'}
Returns:
dict: new dict.
"""
updated_dict = {}
for k, v in zip(d.keys(), d.values()):
new_k = keymap.get(k, k)
updated_dict[new_k] = d[k]
return updated_dict
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""Transform function of Albu."""
# TODO: gt_seg_map is not currently supported
# dict to albumentations format
results = self.mapper(results, self.keymap_to_albu)
results, ori_masks = self._preprocess_results(results)
results = self.aug(**results)
results = self._postprocess_results(results, ori_masks)
if results is None:
return None
# back to the original format
results = self.mapper(results, self.keymap_back)
results['img_shape'] = results['img'].shape[:2]
return results
def _preprocess_results(self, results: dict) -> tuple:
"""Pre-processing results to facilitate the use of Albu."""
if 'bboxes' in results:
# to list of boxes
if not isinstance(results['bboxes'], HorizontalBoxes):
raise NotImplementedError(
'Albu only supports horizontal boxes now')
bboxes = results['bboxes'].numpy()
results['bboxes'] = [x for x in bboxes]
# add pseudo-field for filtration
if self.filter_lost_elements:
results['idx_mapper'] = np.arange(len(results['bboxes']))
# TODO: Support mask structure in albu
ori_masks = None
if 'masks' in results:
if isinstance(results['masks'], PolygonMasks):
raise NotImplementedError(
'Albu only supports BitMap masks now')
ori_masks = results['masks']
if albumentations.__version__ < '0.5':
results['masks'] = results['masks'].masks
else:
results['masks'] = [mask for mask in results['masks'].masks]
return results, ori_masks
def _postprocess_results(
self,
results: dict,
ori_masks: Optional[Union[BitmapMasks,
PolygonMasks]] = None) -> dict:
"""Post-processing Albu output."""
# albumentations may return np.array or list on different versions
if 'gt_bboxes_labels' in results and isinstance(
results['gt_bboxes_labels'], list):
results['gt_bboxes_labels'] = np.array(
results['gt_bboxes_labels'], dtype=np.int64)
if 'gt_ignore_flags' in results and isinstance(
results['gt_ignore_flags'], list):
results['gt_ignore_flags'] = np.array(
results['gt_ignore_flags'], dtype=bool)
if 'bboxes' in results:
if isinstance(results['bboxes'], list):
results['bboxes'] = np.array(
results['bboxes'], dtype=np.float32)
results['bboxes'] = results['bboxes'].reshape(-1, 4)
results['bboxes'] = HorizontalBoxes(results['bboxes'])
# filter label_fields
if self.filter_lost_elements:
for label in self.origin_label_fields:
results[label] = np.array(
[results[label][i] for i in results['idx_mapper']])
if 'masks' in results:
assert ori_masks is not None
results['masks'] = np.array(
[results['masks'][i] for i in results['idx_mapper']])
results['masks'] = ori_masks.__class__(
results['masks'], ori_masks.height, ori_masks.width)
if (not len(results['idx_mapper'])
and self.skip_img_without_anno):
return None
elif 'masks' in results:
results['masks'] = ori_masks.__class__(results['masks'],
ori_masks.height,
ori_masks.width)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
return repr_str
@TRANSFORMS.register_module()
@avoid_cache_randomness
class RandomCenterCropPad(BaseTransform):
"""Random center crop and random around padding for CornerNet.
This operation generates randomly cropped image from the original image and
pads it simultaneously. Different from :class:`RandomCrop`, the output
shape may not equal to ``crop_size`` strictly. We choose a random value
from ``ratios`` and the output shape could be larger or smaller than
``crop_size``. The padding operation is also different from :class:`Pad`,
here we use around padding instead of right-bottom padding.
The relation between output image (padding image) and original image:
.. code:: text
output image
+----------------------------+
| padded area |
+------|----------------------------|----------+
| | cropped area | |
| | +---------------+ | |
| | | . center | | | original image
| | | range | | |
| | +---------------+ | |
+------|----------------------------|----------+
| padded area |
+----------------------------+
There are 5 main areas in the figure:
- output image: output image of this operation, also called padding
image in following instruction.
- original image: input image of this operation.
- padded area: non-intersect area of output image and original image.
- cropped area: the overlap of output image and original image.
- center range: a smaller area where random center chosen from.
center range is computed by ``border`` and original image's shape
to avoid our random center is too close to original image's border.
Also this operation act differently in train and test mode, the summary
pipeline is listed below.
Train pipeline:
1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image
will be ``random_ratio * crop_size``.
2. Choose a ``random_center`` in center range.
3. Generate padding image with center matches the ``random_center``.
4. Initialize the padding image with pixel value equals to ``mean``.
5. Copy the cropped area to padding image.
6. Refine annotations.
Test pipeline:
1. Compute output shape according to ``test_pad_mode``.
2. Generate padding image with center matches the original image
center.
3. Initialize the padding image with pixel value equals to ``mean``.
4. Copy the ``cropped area`` to padding image.
Required Keys:
- img (np.float32)
- img_shape (tuple)
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- img (np.float32)
- img_shape (tuple)
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
Args:
crop_size (tuple, optional): expected size after crop, final size will
computed according to ratio. Requires (width, height)
in train mode, and None in test mode.
ratios (tuple, optional): random select a ratio from tuple and crop
image to (crop_size[0] * ratio) * (crop_size[1] * ratio).
Only available in train mode. Defaults to (0.9, 1.0, 1.1).
border (int, optional): max distance from center select area to image
border. Only available in train mode. Defaults to 128.
mean (sequence, optional): Mean values of 3 channels.
std (sequence, optional): Std values of 3 channels.
to_rgb (bool, optional): Whether to convert the image from BGR to RGB.
test_mode (bool): whether involve random variables in transform.
In train mode, crop_size is fixed, center coords and ratio is
random selected from predefined lists. In test mode, crop_size
is image's original shape, center coords and ratio is fixed.
Defaults to False.
test_pad_mode (tuple, optional): padding method and padding shape
value, only available in test mode. Default is using
'logical_or' with 127 as padding shape value.
- 'logical_or': final_shape = input_shape | padding_shape_value
- 'size_divisor': final_shape = int(
ceil(input_shape / padding_shape_value) * padding_shape_value)
Defaults to ('logical_or', 127).
test_pad_add_pix (int): Extra padding pixel in test mode.
Defaults to 0.
bbox_clip_border (bool): Whether clip the objects outside
the border of the image. Defaults to True.
"""
def __init__(self,
crop_size: Optional[tuple] = None,
ratios: Optional[tuple] = (0.9, 1.0, 1.1),
border: Optional[int] = 128,
mean: Optional[Sequence] = None,
std: Optional[Sequence] = None,
to_rgb: Optional[bool] = None,
test_mode: bool = False,
test_pad_mode: Optional[tuple] = ('logical_or', 127),
test_pad_add_pix: int = 0,
bbox_clip_border: bool = True) -> None:
if test_mode:
assert crop_size is None, 'crop_size must be None in test mode'
assert ratios is None, 'ratios must be None in test mode'
assert border is None, 'border must be None in test mode'
assert isinstance(test_pad_mode, (list, tuple))
assert test_pad_mode[0] in ['logical_or', 'size_divisor']
else:
assert isinstance(crop_size, (list, tuple))
assert crop_size[0] > 0 and crop_size[1] > 0, (
'crop_size must > 0 in train mode')
assert isinstance(ratios, (list, tuple))
assert test_pad_mode is None, (
'test_pad_mode must be None in train mode')
self.crop_size = crop_size
self.ratios = ratios
self.border = border
# We do not set default value to mean, std and to_rgb because these
# hyper-parameters are easy to forget but could affect the performance.
# Please use the same setting as Normalize for performance assurance.
assert mean is not None and std is not None and to_rgb is not None
self.to_rgb = to_rgb
self.input_mean = mean
self.input_std = std
if to_rgb:
self.mean = mean[::-1]
self.std = std[::-1]
else:
self.mean = mean
self.std = std
self.test_mode = test_mode
self.test_pad_mode = test_pad_mode
self.test_pad_add_pix = test_pad_add_pix
self.bbox_clip_border = bbox_clip_border
def _get_border(self, border, size):
"""Get final border for the target size.
This function generates a ``final_border`` according to image's shape.
The area between ``final_border`` and ``size - final_border`` is the
``center range``. We randomly choose center from the ``center range``
to avoid our random center is too close to original image's border.
Also ``center range`` should be larger than 0.
Args:
border (int): The initial border, default is 128.
size (int): The width or height of original image.
Returns:
int: The final border.
"""
k = 2 * border / size
i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k)))
return border // i
def _filter_boxes(self, patch, boxes):
"""Check whether the center of each box is in the patch.
Args:
patch (list[int]): The cropped area, [left, top, right, bottom].
boxes (numpy array, (N x 4)): Ground truth boxes.
Returns:
mask (numpy array, (N,)): Each box is inside or outside the patch.
"""
center = boxes.centers.numpy()
mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (
center[:, 0] < patch[2]) * (
center[:, 1] < patch[3])
return mask
def _crop_image_and_paste(self, image, center, size):
"""Crop image with a given center and size, then paste the cropped
image to a blank image with two centers align.
This function is equivalent to generating a blank image with ``size``
as its shape. Then cover it on the original image with two centers (
the center of blank image and the random center of original image)
aligned. The overlap area is paste from the original image and the
outside area is filled with ``mean pixel``.
Args:
image (np array, H x W x C): Original image.
center (list[int]): Target crop center coord.
size (list[int]): Target crop size. [target_h, target_w]
Returns:
cropped_img (np array, target_h x target_w x C): Cropped image.
border (np array, 4): The distance of four border of
``cropped_img`` to the original image area, [top, bottom,
left, right]
patch (list[int]): The cropped area, [left, top, right, bottom].
"""
center_y, center_x = center
target_h, target_w = size
img_h, img_w, img_c = image.shape
x0 = max(0, center_x - target_w // 2)
x1 = min(center_x + target_w // 2, img_w)
y0 = max(0, center_y - target_h // 2)
y1 = min(center_y + target_h // 2, img_h)
patch = np.array((int(x0), int(y0), int(x1), int(y1)))
left, right = center_x - x0, x1 - center_x
top, bottom = center_y - y0, y1 - center_y
cropped_center_y, cropped_center_x = target_h // 2, target_w // 2
cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype)
for i in range(img_c):
cropped_img[:, :, i] += self.mean[i]
y_slice = slice(cropped_center_y - top, cropped_center_y + bottom)
x_slice = slice(cropped_center_x - left, cropped_center_x + right)
cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :]
border = np.array([
cropped_center_y - top, cropped_center_y + bottom,
cropped_center_x - left, cropped_center_x + right
],
dtype=np.float32)
return cropped_img, border, patch
def _train_aug(self, results):
"""Random crop and around padding the original image.
Args:
results (dict): Image infomations in the augment pipeline.
Returns:
results (dict): The updated dict.
"""
img = results['img']
h, w, c = img.shape
gt_bboxes = results['gt_bboxes']
while True:
scale = random.choice(self.ratios)
new_h = int(self.crop_size[1] * scale)
new_w = int(self.crop_size[0] * scale)
h_border = self._get_border(self.border, h)
w_border = self._get_border(self.border, w)
for i in range(50):
center_x = random.randint(low=w_border, high=w - w_border)
center_y = random.randint(low=h_border, high=h - h_border)
cropped_img, border, patch = self._crop_image_and_paste(
img, [center_y, center_x], [new_h, new_w])
if len(gt_bboxes) == 0:
results['img'] = cropped_img
results['img_shape'] = cropped_img.shape[:2]
return results
# if image do not have valid bbox, any crop patch is valid.
mask = self._filter_boxes(patch, gt_bboxes)
if not mask.any():
continue
results['img'] = cropped_img
results['img_shape'] = cropped_img.shape[:2]
x0, y0, x1, y1 = patch
left_w, top_h = center_x - x0, center_y - y0
cropped_center_x, cropped_center_y = new_w // 2, new_h // 2
# crop bboxes accordingly and clip to the image boundary
gt_bboxes = gt_bboxes[mask]
gt_bboxes.translate_([
cropped_center_x - left_w - x0,
cropped_center_y - top_h - y0
])
if self.bbox_clip_border:
gt_bboxes.clip_([new_h, new_w])
keep = gt_bboxes.is_inside([new_h, new_w]).numpy()
gt_bboxes = gt_bboxes[keep]
results['gt_bboxes'] = gt_bboxes
# ignore_flags
if results.get('gt_ignore_flags', None) is not None:
gt_ignore_flags = results['gt_ignore_flags'][mask]
results['gt_ignore_flags'] = \
gt_ignore_flags[keep]
# labels
if results.get('gt_bboxes_labels', None) is not None:
gt_labels = results['gt_bboxes_labels'][mask]
results['gt_bboxes_labels'] = gt_labels[keep]
if 'gt_masks' in results or 'gt_seg_map' in results:
raise NotImplementedError(
'RandomCenterCropPad only supports bbox.')
return results
def _test_aug(self, results):
"""Around padding the original image without cropping.
The padding mode and value are from ``test_pad_mode``.
Args:
results (dict): Image infomations in the augment pipeline.
Returns:
results (dict): The updated dict.
"""
img = results['img']
h, w, c = img.shape
if self.test_pad_mode[0] in ['logical_or']:
# self.test_pad_add_pix is only used for centernet
target_h = (h | self.test_pad_mode[1]) + self.test_pad_add_pix
target_w = (w | self.test_pad_mode[1]) + self.test_pad_add_pix
elif self.test_pad_mode[0] in ['size_divisor']:
divisor = self.test_pad_mode[1]
target_h = int(np.ceil(h / divisor)) * divisor
target_w = int(np.ceil(w / divisor)) * divisor
else:
raise NotImplementedError(
'RandomCenterCropPad only support two testing pad mode:'
'logical-or and size_divisor.')
cropped_img, border, _ = self._crop_image_and_paste(
img, [h // 2, w // 2], [target_h, target_w])
results['img'] = cropped_img
results['img_shape'] = cropped_img.shape[:2]
results['border'] = border
return results
@autocast_box_type()
def transform(self, results: dict) -> dict:
img = results['img']
assert img.dtype == np.float32, (
'RandomCenterCropPad needs the input image of dtype np.float32,'
' please set "to_float32=True" in "LoadImageFromFile" pipeline')
h, w, c = img.shape
assert c == len(self.mean)
if self.test_mode:
return self._test_aug(results)
else:
return self._train_aug(results)
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(crop_size={self.crop_size}, '
repr_str += f'ratios={self.ratios}, '
repr_str += f'border={self.border}, '
repr_str += f'mean={self.input_mean}, '
repr_str += f'std={self.input_std}, '
repr_str += f'to_rgb={self.to_rgb}, '
repr_str += f'test_mode={self.test_mode}, '
repr_str += f'test_pad_mode={self.test_pad_mode}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@TRANSFORMS.register_module()
class CutOut(BaseTransform):
"""CutOut operation.
Randomly drop some regions of image used in
`Cutout <https://arxiv.org/abs/1708.04552>`_.
Required Keys:
- img
Modified Keys:
- img
Args:
n_holes (int or tuple[int, int]): Number of regions to be dropped.
If it is given as a list, number of holes will be randomly
selected from the closed interval [``n_holes[0]``, ``n_holes[1]``].
cutout_shape (tuple[int, int] or list[tuple[int, int]], optional):
The candidate shape of dropped regions. It can be
``tuple[int, int]`` to use a fixed cutout shape, or
``list[tuple[int, int]]`` to randomly choose shape
from the list. Defaults to None.
cutout_ratio (tuple[float, float] or list[tuple[float, float]],
optional): The candidate ratio of dropped regions. It can be
``tuple[float, float]`` to use a fixed ratio or
``list[tuple[float, float]]`` to randomly choose ratio
from the list. Please note that ``cutout_shape`` and
``cutout_ratio`` cannot be both given at the same time.
Defaults to None.
fill_in (tuple[float, float, float] or tuple[int, int, int]): The value
of pixel to fill in the dropped regions. Defaults to (0, 0, 0).
"""
def __init__(
self,
n_holes: Union[int, Tuple[int, int]],
cutout_shape: Optional[Union[Tuple[int, int],
List[Tuple[int, int]]]] = None,
cutout_ratio: Optional[Union[Tuple[float, float],
List[Tuple[float, float]]]] = None,
fill_in: Union[Tuple[float, float, float], Tuple[int, int,
int]] = (0, 0, 0)
) -> None:
assert (cutout_shape is None) ^ (cutout_ratio is None), \
'Either cutout_shape or cutout_ratio should be specified.'
assert (isinstance(cutout_shape, (list, tuple))
or isinstance(cutout_ratio, (list, tuple)))
if isinstance(n_holes, tuple):
assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1]
else:
n_holes = (n_holes, n_holes)
self.n_holes = n_holes
self.fill_in = fill_in
self.with_ratio = cutout_ratio is not None
self.candidates = cutout_ratio if self.with_ratio else cutout_shape
if not isinstance(self.candidates, list):
self.candidates = [self.candidates]
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Call function to drop some regions of image."""
h, w, c = results['img'].shape
n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1)
for _ in range(n_holes):
x1 = np.random.randint(0, w)
y1 = np.random.randint(0, h)
index = np.random.randint(0, len(self.candidates))
if not self.with_ratio:
cutout_w, cutout_h = self.candidates[index]
else:
cutout_w = int(self.candidates[index][0] * w)
cutout_h = int(self.candidates[index][1] * h)
x2 = np.clip(x1 + cutout_w, 0, w)
y2 = np.clip(y1 + cutout_h, 0, h)
results['img'][y1:y2, x1:x2, :] = self.fill_in
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(n_holes={self.n_holes}, '
repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio
else f'cutout_shape={self.candidates}, ')
repr_str += f'fill_in={self.fill_in})'
return repr_str
@TRANSFORMS.register_module()
class Mosaic(BaseTransform):
"""Mosaic augmentation.
Given 4 images, mosaic transform combines them into
one output image. The output image is composed of the parts from each sub-
image.
.. code:: text
mosaic transform
center_x
+------------------------------+
| pad | pad |
| +-----------+ |
| | | |
| | image1 |--------+ |
| | | | |
| | | image2 | |
center_y |----+-------------+-----------|
| | cropped | |
|pad | image3 | image4 |
| | | |
+----|-------------+-----------+
| |
+-------------+
The mosaic transform steps are as follows:
1. Choose the mosaic center as the intersections of 4 images
2. Get the left top image according to the index, and randomly
sample another 3 images from the custom dataset.
3. Sub image will be cropped if image is larger than mosaic patch
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image size before mosaic pipeline of single
image. The shape order should be (width, height).
Defaults to (640, 640).
center_ratio_range (Sequence[float]): Center ratio range of mosaic
output. Defaults to (0.5, 1.5).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
pad_val (int): Pad value. Defaults to 114.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
"""
def __init__(self,
img_scale: Tuple[int, int] = (640, 640),
center_ratio_range: Tuple[float, float] = (0.5, 1.5),
bbox_clip_border: bool = True,
pad_val: float = 114.0,
prob: float = 1.0) -> None:
assert isinstance(img_scale, tuple)
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. ' \
f'got {prob}.'
log_img_scale(img_scale, skip_square=True, shape_order='wh')
self.img_scale = img_scale
self.center_ratio_range = center_ratio_range
self.bbox_clip_border = bbox_clip_border
self.pad_val = pad_val
self.prob = prob
@cache_randomness
def get_indexes(self, dataset: BaseDataset) -> int:
"""Call function to collect indexes.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: indexes.
"""
indexes = [random.randint(0, len(dataset)) for _ in range(3)]
return indexes
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Mosaic transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
if random.uniform(0, 1) > self.prob:
return results
assert 'mix_results' in results
mosaic_bboxes = []
mosaic_bboxes_labels = []
mosaic_ignore_flags = []
if len(results['img'].shape) == 3:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2), 3),
self.pad_val,
dtype=results['img'].dtype)
else:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2)),
self.pad_val,
dtype=results['img'].dtype)
# mosaic center x, y
center_x = int(
random.uniform(*self.center_ratio_range) * self.img_scale[0])
center_y = int(
random.uniform(*self.center_ratio_range) * self.img_scale[1])
center_position = (center_x, center_y)
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
for i, loc in enumerate(loc_strs):
if loc == 'top_left':
results_patch = copy.deepcopy(results)
else:
results_patch = copy.deepcopy(results['mix_results'][i - 1])
img_i = results_patch['img']
h_i, w_i = img_i.shape[:2]
# keep_ratio resize
scale_ratio_i = min(self.img_scale[1] / h_i,
self.img_scale[0] / w_i)
img_i = mmcv.imresize(
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)))
# compute the combine parameters
paste_coord, crop_coord = self._mosaic_combine(
loc, center_position, img_i.shape[:2][::-1])
x1_p, y1_p, x2_p, y2_p = paste_coord
x1_c, y1_c, x2_c, y2_c = crop_coord
# crop and paste image
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]
# adjust coordinate
gt_bboxes_i = results_patch['gt_bboxes']
gt_bboxes_labels_i = results_patch['gt_bboxes_labels']
gt_ignore_flags_i = results_patch['gt_ignore_flags']
padw = x1_p - x1_c
padh = y1_p - y1_c
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i])
gt_bboxes_i.translate_([padw, padh])
mosaic_bboxes.append(gt_bboxes_i)
mosaic_bboxes_labels.append(gt_bboxes_labels_i)
mosaic_ignore_flags.append(gt_ignore_flags_i)
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0)
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0)
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0)
if self.bbox_clip_border:
mosaic_bboxes.clip_([2 * self.img_scale[1], 2 * self.img_scale[0]])
# remove outside bboxes
inside_inds = mosaic_bboxes.is_inside(
[2 * self.img_scale[1], 2 * self.img_scale[0]]).numpy()
mosaic_bboxes = mosaic_bboxes[inside_inds]
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds]
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds]
results['img'] = mosaic_img
results['img_shape'] = mosaic_img.shape[:2]
results['gt_bboxes'] = mosaic_bboxes
results['gt_bboxes_labels'] = mosaic_bboxes_labels
results['gt_ignore_flags'] = mosaic_ignore_flags
return results
def _mosaic_combine(
self, loc: str, center_position_xy: Sequence[float],
img_shape_wh: Sequence[int]) -> Tuple[Tuple[int], Tuple[int]]:
"""Calculate global coordinate of mosaic image and local coordinate of
cropped sub-image.
Args:
loc (str): Index for the sub-image, loc in ('top_left',
'top_right', 'bottom_left', 'bottom_right').
center_position_xy (Sequence[float]): Mixing center for 4 images,
(x, y).
img_shape_wh (Sequence[int]): Width and height of sub-image
Returns:
tuple[tuple[float]]: Corresponding coordinate of pasting and
cropping
- paste_coord (tuple): paste corner coordinate in mosaic image.
- crop_coord (tuple): crop corner coordinate in mosaic image.
"""
assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right')
if loc == 'top_left':
# index0 to top left part of image
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
max(center_position_xy[1] - img_shape_wh[1], 0), \
center_position_xy[0], \
center_position_xy[1]
crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - (
y2 - y1), img_shape_wh[0], img_shape_wh[1]
elif loc == 'top_right':
# index1 to top right part of image
x1, y1, x2, y2 = center_position_xy[0], \
max(center_position_xy[1] - img_shape_wh[1], 0), \
min(center_position_xy[0] + img_shape_wh[0],
self.img_scale[0] * 2), \
center_position_xy[1]
crop_coord = 0, img_shape_wh[1] - (y2 - y1), min(
img_shape_wh[0], x2 - x1), img_shape_wh[1]
elif loc == 'bottom_left':
# index2 to bottom left part of image
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
center_position_xy[1], \
center_position_xy[0], \
min(self.img_scale[1] * 2, center_position_xy[1] +
img_shape_wh[1])
crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min(
y2 - y1, img_shape_wh[1])
else:
# index3 to bottom right part of image
x1, y1, x2, y2 = center_position_xy[0], \
center_position_xy[1], \
min(center_position_xy[0] + img_shape_wh[0],
self.img_scale[0] * 2), \
min(self.img_scale[1] * 2, center_position_xy[1] +
img_shape_wh[1])
crop_coord = 0, 0, min(img_shape_wh[0],
x2 - x1), min(y2 - y1, img_shape_wh[1])
paste_coord = x1, y1, x2, y2
return paste_coord, crop_coord
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'center_ratio_range={self.center_ratio_range}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class MixUp(BaseTransform):
"""MixUp data augmentation.
.. code:: text
mixup transform
+------------------------------+
| mixup image | |
| +--------|--------+ |
| | | | |
|---------------+ | |
| | | |
| | image | |
| | | |
| | | |
| |-----------------+ |
| pad |
+------------------------------+
The mixup transform steps are as follows:
1. Another random image is picked by dataset and embedded in
the top left patch(after padding and resizing)
2. The target of mixup transform is the weighted average of mixup
image and origin image.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image output size after mixup pipeline.
The shape order should be (width, height). Defaults to (640, 640).
ratio_range (Sequence[float]): Scale ratio of mixup image.
Defaults to (0.5, 1.5).
flip_ratio (float): Horizontal flip ratio of mixup image.
Defaults to 0.5.
pad_val (int): Pad value. Defaults to 114.
max_iters (int): The maximum number of iterations. If the number of
iterations is greater than `max_iters`, but gt_bbox is still
empty, then the iteration is terminated. Defaults to 15.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
"""
def __init__(self,
img_scale: Tuple[int, int] = (640, 640),
ratio_range: Tuple[float, float] = (0.5, 1.5),
flip_ratio: float = 0.5,
pad_val: float = 114.0,
max_iters: int = 15,
bbox_clip_border: bool = True) -> None:
assert isinstance(img_scale, tuple)
log_img_scale(img_scale, skip_square=True, shape_order='wh')
self.dynamic_scale = img_scale
self.ratio_range = ratio_range
self.flip_ratio = flip_ratio
self.pad_val = pad_val
self.max_iters = max_iters
self.bbox_clip_border = bbox_clip_border
@cache_randomness
def get_indexes(self, dataset: BaseDataset) -> int:
"""Call function to collect indexes.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: indexes.
"""
for i in range(self.max_iters):
index = random.randint(0, len(dataset))
gt_bboxes_i = dataset[index]['gt_bboxes']
if len(gt_bboxes_i) != 0:
break
return index
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""MixUp transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
assert 'mix_results' in results
assert len(
results['mix_results']) == 1, 'MixUp only support 2 images now !'
if results['mix_results'][0]['gt_bboxes'].shape[0] == 0:
# empty bbox
return results
retrieve_results = results['mix_results'][0]
retrieve_img = retrieve_results['img']
jit_factor = random.uniform(*self.ratio_range)
is_flip = random.uniform(0, 1) > self.flip_ratio
if len(retrieve_img.shape) == 3:
out_img = np.ones(
(self.dynamic_scale[1], self.dynamic_scale[0], 3),
dtype=retrieve_img.dtype) * self.pad_val
else:
out_img = np.ones(
self.dynamic_scale[::-1],
dtype=retrieve_img.dtype) * self.pad_val
# 1. keep_ratio resize
scale_ratio = min(self.dynamic_scale[1] / retrieve_img.shape[0],
self.dynamic_scale[0] / retrieve_img.shape[1])
retrieve_img = mmcv.imresize(
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio),
int(retrieve_img.shape[0] * scale_ratio)))
# 2. paste
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img
# 3. scale jit
scale_ratio *= jit_factor
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor),
int(out_img.shape[0] * jit_factor)))
# 4. flip
if is_flip:
out_img = out_img[:, ::-1, :]
# 5. random crop
ori_img = results['img']
origin_h, origin_w = out_img.shape[:2]
target_h, target_w = ori_img.shape[:2]
padded_img = np.ones((max(origin_h, target_h), max(
origin_w, target_w), 3)) * self.pad_val
padded_img = padded_img.astype(np.uint8)
padded_img[:origin_h, :origin_w] = out_img
x_offset, y_offset = 0, 0
if padded_img.shape[0] > target_h:
y_offset = random.randint(0, padded_img.shape[0] - target_h)
if padded_img.shape[1] > target_w:
x_offset = random.randint(0, padded_img.shape[1] - target_w)
padded_cropped_img = padded_img[y_offset:y_offset + target_h,
x_offset:x_offset + target_w]
# 6. adjust bbox
retrieve_gt_bboxes = retrieve_results['gt_bboxes']
retrieve_gt_bboxes.rescale_([scale_ratio, scale_ratio])
if self.bbox_clip_border:
retrieve_gt_bboxes.clip_([origin_h, origin_w])
if is_flip:
retrieve_gt_bboxes.flip_([origin_h, origin_w],
direction='horizontal')
# 7. filter
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.clone()
cp_retrieve_gt_bboxes.translate_([-x_offset, -y_offset])
if self.bbox_clip_border:
cp_retrieve_gt_bboxes.clip_([target_h, target_w])
# 8. mix up
ori_img = ori_img.astype(np.float32)
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32)
retrieve_gt_bboxes_labels = retrieve_results['gt_bboxes_labels']
retrieve_gt_ignore_flags = retrieve_results['gt_ignore_flags']
mixup_gt_bboxes = cp_retrieve_gt_bboxes.cat(
(results['gt_bboxes'], cp_retrieve_gt_bboxes), dim=0)
mixup_gt_bboxes_labels = np.concatenate(
(results['gt_bboxes_labels'], retrieve_gt_bboxes_labels), axis=0)
mixup_gt_ignore_flags = np.concatenate(
(results['gt_ignore_flags'], retrieve_gt_ignore_flags), axis=0)
# remove outside bbox
inside_inds = mixup_gt_bboxes.is_inside([target_h, target_w]).numpy()
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds]
mixup_gt_bboxes_labels = mixup_gt_bboxes_labels[inside_inds]
mixup_gt_ignore_flags = mixup_gt_ignore_flags[inside_inds]
results['img'] = mixup_img.astype(np.uint8)
results['img_shape'] = mixup_img.shape[:2]
results['gt_bboxes'] = mixup_gt_bboxes
results['gt_bboxes_labels'] = mixup_gt_bboxes_labels
results['gt_ignore_flags'] = mixup_gt_ignore_flags
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(dynamic_scale={self.dynamic_scale}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'flip_ratio={self.flip_ratio}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'max_iters={self.max_iters}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@TRANSFORMS.register_module()
class RandomAffine(BaseTransform):
"""Random affine transform data augmentation.
This operation randomly generates affine transform matrix which including
rotation, translation, shear and scaling transforms.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
max_rotate_degree (float): Maximum degrees of rotation transform.
Defaults to 10.
max_translate_ratio (float): Maximum ratio of translation.
Defaults to 0.1.
scaling_ratio_range (tuple[float]): Min and max ratio of
scaling transform. Defaults to (0.5, 1.5).
max_shear_degree (float): Maximum degrees of shear
transform. Defaults to 2.
border (tuple[int]): Distance from width and height sides of input
image to adjust output shape. Only used in mosaic dataset.
Defaults to (0, 0).
border_val (tuple[int]): Border padding values of 3 channels.
Defaults to (114, 114, 114).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
"""
def __init__(self,
max_rotate_degree: float = 10.0,
max_translate_ratio: float = 0.1,
scaling_ratio_range: Tuple[float, float] = (0.5, 1.5),
max_shear_degree: float = 2.0,
border: Tuple[int, int] = (0, 0),
border_val: Tuple[int, int, int] = (114, 114, 114),
bbox_clip_border: bool = True) -> None:
assert 0 <= max_translate_ratio <= 1
assert scaling_ratio_range[0] <= scaling_ratio_range[1]
assert scaling_ratio_range[0] > 0
self.max_rotate_degree = max_rotate_degree
self.max_translate_ratio = max_translate_ratio
self.scaling_ratio_range = scaling_ratio_range
self.max_shear_degree = max_shear_degree
self.border = border
self.border_val = border_val
self.bbox_clip_border = bbox_clip_border
@cache_randomness
def _get_random_homography_matrix(self, height, width):
# Rotation
rotation_degree = random.uniform(-self.max_rotate_degree,
self.max_rotate_degree)
rotation_matrix = self._get_rotation_matrix(rotation_degree)
# Scaling
scaling_ratio = random.uniform(self.scaling_ratio_range[0],
self.scaling_ratio_range[1])
scaling_matrix = self._get_scaling_matrix(scaling_ratio)
# Shear
x_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
y_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
shear_matrix = self._get_shear_matrix(x_degree, y_degree)
# Translation
trans_x = random.uniform(-self.max_translate_ratio,
self.max_translate_ratio) * width
trans_y = random.uniform(-self.max_translate_ratio,
self.max_translate_ratio) * height
translate_matrix = self._get_translation_matrix(trans_x, trans_y)
warp_matrix = (
translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix)
return warp_matrix
@autocast_box_type()
def transform(self, results: dict) -> dict:
img = results['img']
height = img.shape[0] + self.border[1] * 2
width = img.shape[1] + self.border[0] * 2
warp_matrix = self._get_random_homography_matrix(height, width)
img = cv2.warpPerspective(
img,
warp_matrix,
dsize=(width, height),
borderValue=self.border_val)
results['img'] = img
results['img_shape'] = img.shape[:2]
bboxes = results['gt_bboxes']
num_bboxes = len(bboxes)
if num_bboxes:
bboxes.project_(warp_matrix)
if self.bbox_clip_border:
bboxes.clip_([height, width])
# remove outside bbox
valid_index = bboxes.is_inside([height, width]).numpy()
results['gt_bboxes'] = bboxes[valid_index]
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
valid_index]
results['gt_ignore_flags'] = results['gt_ignore_flags'][
valid_index]
if 'gt_masks' in results:
raise NotImplementedError('RandomAffine only supports bbox.')
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(max_rotate_degree={self.max_rotate_degree}, '
repr_str += f'max_translate_ratio={self.max_translate_ratio}, '
repr_str += f'scaling_ratio_range={self.scaling_ratio_range}, '
repr_str += f'max_shear_degree={self.max_shear_degree}, '
repr_str += f'border={self.border}, '
repr_str += f'border_val={self.border_val}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@staticmethod
def _get_rotation_matrix(rotate_degrees: float) -> np.ndarray:
radian = math.radians(rotate_degrees)
rotation_matrix = np.array(
[[np.cos(radian), -np.sin(radian), 0.],
[np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]],
dtype=np.float32)
return rotation_matrix
@staticmethod
def _get_scaling_matrix(scale_ratio: float) -> np.ndarray:
scaling_matrix = np.array(
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]],
dtype=np.float32)
return scaling_matrix
@staticmethod
def _get_shear_matrix(x_shear_degrees: float,
y_shear_degrees: float) -> np.ndarray:
x_radian = math.radians(x_shear_degrees)
y_radian = math.radians(y_shear_degrees)
shear_matrix = np.array([[1, np.tan(x_radian), 0.],
[np.tan(y_radian), 1, 0.], [0., 0., 1.]],
dtype=np.float32)
return shear_matrix
@staticmethod
def _get_translation_matrix(x: float, y: float) -> np.ndarray:
translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]],
dtype=np.float32)
return translation_matrix
@TRANSFORMS.register_module()
class YOLOXHSVRandomAug(BaseTransform):
"""Apply HSV augmentation to image sequentially. It is referenced from
https://github.com/Megvii-
BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21.
Required Keys:
- img
Modified Keys:
- img
Args:
hue_delta (int): delta of hue. Defaults to 5.
saturation_delta (int): delta of saturation. Defaults to 30.
value_delta (int): delat of value. Defaults to 30.
"""
def __init__(self,
hue_delta: int = 5,
saturation_delta: int = 30,
value_delta: int = 30) -> None:
self.hue_delta = hue_delta
self.saturation_delta = saturation_delta
self.value_delta = value_delta
@cache_randomness
def _get_hsv_gains(self):
hsv_gains = np.random.uniform(-1, 1, 3) * [
self.hue_delta, self.saturation_delta, self.value_delta
]
# random selection of h, s, v
hsv_gains *= np.random.randint(0, 2, 3)
# prevent overflow
hsv_gains = hsv_gains.astype(np.int16)
return hsv_gains
def transform(self, results: dict) -> dict:
img = results['img']
hsv_gains = self._get_hsv_gains()
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16)
img_hsv[..., 0] = (img_hsv[..., 0] + hsv_gains[0]) % 180
img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_gains[1], 0, 255)
img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_gains[2], 0, 255)
cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img)
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(hue_delta={self.hue_delta}, '
repr_str += f'saturation_delta={self.saturation_delta}, '
repr_str += f'value_delta={self.value_delta})'
return repr_str
@TRANSFORMS.register_module()
class CopyPaste(BaseTransform):
"""Simple Copy-Paste is a Strong Data Augmentation Method for Instance
Segmentation The simple copy-paste transform steps are as follows:
1. The destination image is already resized with aspect ratio kept,
cropped and padded.
2. Randomly select a source image, which is also already resized
with aspect ratio kept, cropped and padded in a similar way
as the destination image.
3. Randomly select some objects from the source image.
4. Paste these source objects to the destination image directly,
due to the source and destination image have the same size.
5. Update object masks of the destination image, for some origin objects
may be occluded.
6. Generate bboxes from the updated destination masks and
filter some objects which are totally occluded, and adjust bboxes
which are partly occluded.
7. Append selected source bboxes, masks, and labels.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- gt_masks (BitmapMasks) (optional)
Modified Keys:
- img
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
- gt_masks (optional)
Args:
max_num_pasted (int): The maximum number of pasted objects.
Defaults to 100.
bbox_occluded_thr (int): The threshold of occluded bbox.
Defaults to 10.
mask_occluded_thr (int): The threshold of occluded mask.
Defaults to 300.
selected (bool): Whether select objects or not. If select is False,
all objects of the source image will be pasted to the
destination image.
Defaults to True.
paste_by_box (bool): Whether use boxes as masks when masks are not
available.
Defaults to False.
"""
def __init__(
self,
max_num_pasted: int = 100,
bbox_occluded_thr: int = 10,
mask_occluded_thr: int = 300,
selected: bool = True,
paste_by_box: bool = False,
) -> None:
self.max_num_pasted = max_num_pasted
self.bbox_occluded_thr = bbox_occluded_thr
self.mask_occluded_thr = mask_occluded_thr
self.selected = selected
self.paste_by_box = paste_by_box
@cache_randomness
def get_indexes(self, dataset: BaseDataset) -> int:
"""Call function to collect indexes.s.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: Indexes.
"""
return random.randint(0, len(dataset))
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to make a copy-paste of image.
Args:
results (dict): Result dict.
Returns:
dict: Result dict with copy-paste transformed.
"""
assert 'mix_results' in results
num_images = len(results['mix_results'])
assert num_images == 1, \
f'CopyPaste only supports processing 2 images, got {num_images}'
if self.selected:
selected_results = self._select_object(results['mix_results'][0])
else:
selected_results = results['mix_results'][0]
return self._copy_paste(results, selected_results)
@cache_randomness
def _get_selected_inds(self, num_bboxes: int) -> np.ndarray:
max_num_pasted = min(num_bboxes + 1, self.max_num_pasted)
num_pasted = np.random.randint(0, max_num_pasted)
return np.random.choice(num_bboxes, size=num_pasted, replace=False)
def get_gt_masks(self, results: dict) -> BitmapMasks:
"""Get gt_masks originally or generated based on bboxes.
If gt_masks is not contained in results,
it will be generated based on gt_bboxes.
Args:
results (dict): Result dict.
Returns:
BitmapMasks: gt_masks, originally or generated based on bboxes.
"""
if results.get('gt_masks', None) is not None:
if self.paste_by_box:
warnings.warn('gt_masks is already contained in results, '
'so paste_by_box is disabled.')
return results['gt_masks']
else:
if not self.paste_by_box:
raise RuntimeError('results does not contain masks.')
return results['gt_bboxes'].create_masks(results['img'].shape[:2])
def _select_object(self, results: dict) -> dict:
"""Select some objects from the source results."""
bboxes = results['gt_bboxes']
labels = results['gt_bboxes_labels']
masks = self.get_gt_masks(results)
ignore_flags = results['gt_ignore_flags']
selected_inds = self._get_selected_inds(bboxes.shape[0])
selected_bboxes = bboxes[selected_inds]
selected_labels = labels[selected_inds]
selected_masks = masks[selected_inds]
selected_ignore_flags = ignore_flags[selected_inds]
results['gt_bboxes'] = selected_bboxes
results['gt_bboxes_labels'] = selected_labels
results['gt_masks'] = selected_masks
results['gt_ignore_flags'] = selected_ignore_flags
return results
def _copy_paste(self, dst_results: dict, src_results: dict) -> dict:
"""CopyPaste transform function.
Args:
dst_results (dict): Result dict of the destination image.
src_results (dict): Result dict of the source image.
Returns:
dict: Updated result dict.
"""
dst_img = dst_results['img']
dst_bboxes = dst_results['gt_bboxes']
dst_labels = dst_results['gt_bboxes_labels']
dst_masks = self.get_gt_masks(dst_results)
dst_ignore_flags = dst_results['gt_ignore_flags']
src_img = src_results['img']
src_bboxes = src_results['gt_bboxes']
src_labels = src_results['gt_bboxes_labels']
src_masks = src_results['gt_masks']
src_ignore_flags = src_results['gt_ignore_flags']
if len(src_bboxes) == 0:
return dst_results
# update masks and generate bboxes from updated masks
composed_mask = np.where(np.any(src_masks.masks, axis=0), 1, 0)
updated_dst_masks = self._get_updated_masks(dst_masks, composed_mask)
updated_dst_bboxes = updated_dst_masks.get_bboxes(type(dst_bboxes))
assert len(updated_dst_bboxes) == len(updated_dst_masks)
# filter totally occluded objects
l1_distance = (updated_dst_bboxes.tensor - dst_bboxes.tensor).abs()
bboxes_inds = (l1_distance <= self.bbox_occluded_thr).all(
dim=-1).numpy()
masks_inds = updated_dst_masks.masks.sum(
axis=(1, 2)) > self.mask_occluded_thr
valid_inds = bboxes_inds | masks_inds
# Paste source objects to destination image directly
img = dst_img * (1 - composed_mask[..., np.newaxis]
) + src_img * composed_mask[..., np.newaxis]
bboxes = src_bboxes.cat([updated_dst_bboxes[valid_inds], src_bboxes])
labels = np.concatenate([dst_labels[valid_inds], src_labels])
masks = np.concatenate(
[updated_dst_masks.masks[valid_inds], src_masks.masks])
ignore_flags = np.concatenate(
[dst_ignore_flags[valid_inds], src_ignore_flags])
dst_results['img'] = img
dst_results['gt_bboxes'] = bboxes
dst_results['gt_bboxes_labels'] = labels
dst_results['gt_masks'] = BitmapMasks(masks, masks.shape[1],
masks.shape[2])
dst_results['gt_ignore_flags'] = ignore_flags
return dst_results
def _get_updated_masks(self, masks: BitmapMasks,
composed_mask: np.ndarray) -> BitmapMasks:
"""Update masks with composed mask."""
assert masks.masks.shape[-2:] == composed_mask.shape[-2:], \
'Cannot compare two arrays of different size'
masks.masks = np.where(composed_mask, 0, masks.masks)
return masks
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(max_num_pasted={self.max_num_pasted}, '
repr_str += f'bbox_occluded_thr={self.bbox_occluded_thr}, '
repr_str += f'mask_occluded_thr={self.mask_occluded_thr}, '
repr_str += f'selected={self.selected}), '
repr_str += f'paste_by_box={self.paste_by_box})'
return repr_str
@TRANSFORMS.register_module()
class RandomErasing(BaseTransform):
"""RandomErasing operation.
Random Erasing randomly selects a rectangle region
in an image and erases its pixels with random values.
`RandomErasing <https://arxiv.org/abs/1708.04896>`_.
Required Keys:
- img
- gt_bboxes (HorizontalBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- gt_masks (BitmapMasks) (optional)
Modified Keys:
- img
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
- gt_masks (optional)
Args:
n_patches (int or tuple[int, int]): Number of regions to be dropped.
If it is given as a tuple, number of patches will be randomly
selected from the closed interval [``n_patches[0]``,
``n_patches[1]``].
ratio (float or tuple[float, float]): The ratio of erased regions.
It can be ``float`` to use a fixed ratio or ``tuple[float, float]``
to randomly choose ratio from the interval.
squared (bool): Whether to erase square region. Defaults to True.
bbox_erased_thr (float): The threshold for the maximum area proportion
of the bbox to be erased. When the proportion of the area where the
bbox is erased is greater than the threshold, the bbox will be
removed. Defaults to 0.9.
img_border_value (int or float or tuple): The filled values for
image border. If float, the same fill value will be used for
all the three channels of image. If tuple, it should be 3 elements.
Defaults to 128.
mask_border_value (int): The fill value used for masks. Defaults to 0.
seg_ignore_label (int): The fill value used for segmentation map.
Note this value must equals ``ignore_label`` in ``semantic_head``
of the corresponding config. Defaults to 255.
"""
def __init__(
self,
n_patches: Union[int, Tuple[int, int]],
ratio: Union[float, Tuple[float, float]],
squared: bool = True,
bbox_erased_thr: float = 0.9,
img_border_value: Union[int, float, tuple] = 128,
mask_border_value: int = 0,
seg_ignore_label: int = 255,
) -> None:
if isinstance(n_patches, tuple):
assert len(n_patches) == 2 and 0 <= n_patches[0] < n_patches[1]
else:
n_patches = (n_patches, n_patches)
if isinstance(ratio, tuple):
assert len(ratio) == 2 and 0 <= ratio[0] < ratio[1] <= 1
else:
ratio = (ratio, ratio)
self.n_patches = n_patches
self.ratio = ratio
self.squared = squared
self.bbox_erased_thr = bbox_erased_thr
self.img_border_value = img_border_value
self.mask_border_value = mask_border_value
self.seg_ignore_label = seg_ignore_label
@cache_randomness
def _get_patches(self, img_shape: Tuple[int, int]) -> List[list]:
"""Get patches for random erasing."""
patches = []
n_patches = np.random.randint(self.n_patches[0], self.n_patches[1] + 1)
for _ in range(n_patches):
if self.squared:
ratio = np.random.random() * (self.ratio[1] -
self.ratio[0]) + self.ratio[0]
ratio = (ratio, ratio)
else:
ratio = (np.random.random() * (self.ratio[1] - self.ratio[0]) +
self.ratio[0], np.random.random() *
(self.ratio[1] - self.ratio[0]) + self.ratio[0])
ph, pw = int(img_shape[0] * ratio[0]), int(img_shape[1] * ratio[1])
px1, py1 = np.random.randint(0,
img_shape[1] - pw), np.random.randint(
0, img_shape[0] - ph)
px2, py2 = px1 + pw, py1 + ph
patches.append([px1, py1, px2, py2])
return np.array(patches)
def _transform_img(self, results: dict, patches: List[list]) -> None:
"""Random erasing the image."""
for patch in patches:
px1, py1, px2, py2 = patch
results['img'][py1:py2, px1:px2, :] = self.img_border_value
def _transform_bboxes(self, results: dict, patches: List[list]) -> None:
"""Random erasing the bboxes."""
bboxes = results['gt_bboxes']
# TODO: unify the logic by using operators in BaseBoxes.
assert isinstance(bboxes, HorizontalBoxes)
bboxes = bboxes.numpy()
left_top = np.maximum(bboxes[:, None, :2], patches[:, :2])
right_bottom = np.minimum(bboxes[:, None, 2:], patches[:, 2:])
wh = np.maximum(right_bottom - left_top, 0)
inter_areas = wh[:, :, 0] * wh[:, :, 1]
bbox_areas = (bboxes[:, 2] - bboxes[:, 0]) * (
bboxes[:, 3] - bboxes[:, 1])
bboxes_erased_ratio = inter_areas.sum(-1) / (bbox_areas + 1e-7)
valid_inds = bboxes_erased_ratio < self.bbox_erased_thr
results['gt_bboxes'] = HorizontalBoxes(bboxes[valid_inds])
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][valid_inds]
results['gt_ignore_flags'] = results['gt_ignore_flags'][valid_inds]
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'][valid_inds]
def _transform_masks(self, results: dict, patches: List[list]) -> None:
"""Random erasing the masks."""
for patch in patches:
px1, py1, px2, py2 = patch
results['gt_masks'].masks[:, py1:py2,
px1:px2] = self.mask_border_value
def _transform_seg(self, results: dict, patches: List[list]) -> None:
"""Random erasing the segmentation map."""
for patch in patches:
px1, py1, px2, py2 = patch
results['gt_seg_map'][py1:py2, px1:px2] = self.seg_ignore_label
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Transform function to erase some regions of image."""
patches = self._get_patches(results['img_shape'])
self._transform_img(results, patches)
if results.get('gt_bboxes', None) is not None:
self._transform_bboxes(results, patches)
if results.get('gt_masks', None) is not None:
self._transform_masks(results, patches)
if results.get('gt_seg_map', None) is not None:
self._transform_seg(results, patches)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(n_patches={self.n_patches}, '
repr_str += f'ratio={self.ratio}, '
repr_str += f'squared={self.squared}, '
repr_str += f'bbox_erased_thr={self.bbox_erased_thr}, '
repr_str += f'img_border_value={self.img_border_value}, '
repr_str += f'mask_border_value={self.mask_border_value}, '
repr_str += f'seg_ignore_label={self.seg_ignore_label})'
return repr_str
@TRANSFORMS.register_module()
class CachedMosaic(Mosaic):
"""Cached mosaic augmentation.
Cached mosaic transform will random select images from the cache
and combine them into one output image.
.. code:: text
mosaic transform
center_x
+------------------------------+
| pad | pad |
| +-----------+ |
| | | |
| | image1 |--------+ |
| | | | |
| | | image2 | |
center_y |----+-------------+-----------|
| | cropped | |
|pad | image3 | image4 |
| | | |
+----|-------------+-----------+
| |
+-------------+
The cached mosaic transform steps are as follows:
1. Append the results from the last transform into the cache.
2. Choose the mosaic center as the intersections of 4 images
3. Get the left top image according to the index, and randomly
sample another 3 images from the result cache.
4. Sub image will be cropped if image is larger than mosaic patch
Required Keys:
- img
- gt_bboxes (np.float32) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image size before mosaic pipeline of single
image. The shape order should be (width, height).
Defaults to (640, 640).
center_ratio_range (Sequence[float]): Center ratio range of mosaic
output. Defaults to (0.5, 1.5).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
pad_val (int): Pad value. Defaults to 114.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
max_cached_images (int): The maximum length of the cache. The larger
the cache, the stronger the randomness of this transform. As a
rule of thumb, providing 10 caches for each image suffices for
randomness. Defaults to 40.
random_pop (bool): Whether to randomly pop a result from the cache
when the cache is full. If set to False, use FIFO popping method.
Defaults to True.
"""
def __init__(self,
*args,
max_cached_images: int = 40,
random_pop: bool = True,
**kwargs) -> None:
super().__init__(*args, **kwargs)
self.results_cache = []
self.random_pop = random_pop
assert max_cached_images >= 4, 'The length of cache must >= 4, ' \
f'but got {max_cached_images}.'
self.max_cached_images = max_cached_images
@cache_randomness
def get_indexes(self, cache: list) -> list:
"""Call function to collect indexes.
Args:
cache (list): The results cache.
Returns:
list: indexes.
"""
indexes = [random.randint(0, len(cache) - 1) for _ in range(3)]
return indexes
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Mosaic transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
# cache and pop images
self.results_cache.append(copy.deepcopy(results))
if len(self.results_cache) > self.max_cached_images:
if self.random_pop:
index = random.randint(0, len(self.results_cache) - 1)
else:
index = 0
self.results_cache.pop(index)
if len(self.results_cache) <= 4:
return results
if random.uniform(0, 1) > self.prob:
return results
indices = self.get_indexes(self.results_cache)
mix_results = [copy.deepcopy(self.results_cache[i]) for i in indices]
# TODO: refactor mosaic to reuse these code.
mosaic_bboxes = []
mosaic_bboxes_labels = []
mosaic_ignore_flags = []
mosaic_masks = []
with_mask = True if 'gt_masks' in results else False
if len(results['img'].shape) == 3:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2), 3),
self.pad_val,
dtype=results['img'].dtype)
else:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2)),
self.pad_val,
dtype=results['img'].dtype)
# mosaic center x, y
center_x = int(
random.uniform(*self.center_ratio_range) * self.img_scale[0])
center_y = int(
random.uniform(*self.center_ratio_range) * self.img_scale[1])
center_position = (center_x, center_y)
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
for i, loc in enumerate(loc_strs):
if loc == 'top_left':
results_patch = copy.deepcopy(results)
else:
results_patch = copy.deepcopy(mix_results[i - 1])
img_i = results_patch['img']
h_i, w_i = img_i.shape[:2]
# keep_ratio resize
scale_ratio_i = min(self.img_scale[1] / h_i,
self.img_scale[0] / w_i)
img_i = mmcv.imresize(
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)))
# compute the combine parameters
paste_coord, crop_coord = self._mosaic_combine(
loc, center_position, img_i.shape[:2][::-1])
x1_p, y1_p, x2_p, y2_p = paste_coord
x1_c, y1_c, x2_c, y2_c = crop_coord
# crop and paste image
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]
# adjust coordinate
gt_bboxes_i = results_patch['gt_bboxes']
gt_bboxes_labels_i = results_patch['gt_bboxes_labels']
gt_ignore_flags_i = results_patch['gt_ignore_flags']
padw = x1_p - x1_c
padh = y1_p - y1_c
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i])
gt_bboxes_i.translate_([padw, padh])
mosaic_bboxes.append(gt_bboxes_i)
mosaic_bboxes_labels.append(gt_bboxes_labels_i)
mosaic_ignore_flags.append(gt_ignore_flags_i)
if with_mask and results_patch.get('gt_masks', None) is not None:
gt_masks_i = results_patch['gt_masks']
gt_masks_i = gt_masks_i.rescale(float(scale_ratio_i))
gt_masks_i = gt_masks_i.translate(
out_shape=(int(self.img_scale[0] * 2),
int(self.img_scale[1] * 2)),
offset=padw,
direction='horizontal')
gt_masks_i = gt_masks_i.translate(
out_shape=(int(self.img_scale[0] * 2),
int(self.img_scale[1] * 2)),
offset=padh,
direction='vertical')
mosaic_masks.append(gt_masks_i)
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0)
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0)
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0)
if self.bbox_clip_border:
mosaic_bboxes.clip_([2 * self.img_scale[1], 2 * self.img_scale[0]])
# remove outside bboxes
inside_inds = mosaic_bboxes.is_inside(
[2 * self.img_scale[1], 2 * self.img_scale[0]]).numpy()
mosaic_bboxes = mosaic_bboxes[inside_inds]
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds]
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds]
results['img'] = mosaic_img
results['img_shape'] = mosaic_img.shape[:2]
results['gt_bboxes'] = mosaic_bboxes
results['gt_bboxes_labels'] = mosaic_bboxes_labels
results['gt_ignore_flags'] = mosaic_ignore_flags
if with_mask:
mosaic_masks = mosaic_masks[0].cat(mosaic_masks)
results['gt_masks'] = mosaic_masks[inside_inds]
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'center_ratio_range={self.center_ratio_range}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob}, '
repr_str += f'max_cached_images={self.max_cached_images}, '
repr_str += f'random_pop={self.random_pop})'
return repr_str
@TRANSFORMS.register_module()
class CachedMixUp(BaseTransform):
"""Cached mixup data augmentation.
.. code:: text
mixup transform
+------------------------------+
| mixup image | |
| +--------|--------+ |
| | | | |
|---------------+ | |
| | | |
| | image | |
| | | |
| | | |
| |-----------------+ |
| pad |
+------------------------------+
The cached mixup transform steps are as follows:
1. Append the results from the last transform into the cache.
2. Another random image is picked from the cache and embedded in
the top left patch(after padding and resizing)
3. The target of mixup transform is the weighted average of mixup
image and origin image.
Required Keys:
- img
- gt_bboxes (np.float32) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image output size after mixup pipeline.
The shape order should be (width, height). Defaults to (640, 640).
ratio_range (Sequence[float]): Scale ratio of mixup image.
Defaults to (0.5, 1.5).
flip_ratio (float): Horizontal flip ratio of mixup image.
Defaults to 0.5.
pad_val (int): Pad value. Defaults to 114.
max_iters (int): The maximum number of iterations. If the number of
iterations is greater than `max_iters`, but gt_bbox is still
empty, then the iteration is terminated. Defaults to 15.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
max_cached_images (int): The maximum length of the cache. The larger
the cache, the stronger the randomness of this transform. As a
rule of thumb, providing 10 caches for each image suffices for
randomness. Defaults to 20.
random_pop (bool): Whether to randomly pop a result from the cache
when the cache is full. If set to False, use FIFO popping method.
Defaults to True.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
"""
def __init__(self,
img_scale: Tuple[int, int] = (640, 640),
ratio_range: Tuple[float, float] = (0.5, 1.5),
flip_ratio: float = 0.5,
pad_val: float = 114.0,
max_iters: int = 15,
bbox_clip_border: bool = True,
max_cached_images: int = 20,
random_pop: bool = True,
prob: float = 1.0) -> None:
assert isinstance(img_scale, tuple)
assert max_cached_images >= 2, 'The length of cache must >= 2, ' \
f'but got {max_cached_images}.'
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. ' \
f'got {prob}.'
self.dynamic_scale = img_scale
self.ratio_range = ratio_range
self.flip_ratio = flip_ratio
self.pad_val = pad_val
self.max_iters = max_iters
self.bbox_clip_border = bbox_clip_border
self.results_cache = []
self.max_cached_images = max_cached_images
self.random_pop = random_pop
self.prob = prob
@cache_randomness
def get_indexes(self, cache: list) -> int:
"""Call function to collect indexes.
Args:
cache (list): The result cache.
Returns:
int: index.
"""
for i in range(self.max_iters):
index = random.randint(0, len(cache) - 1)
gt_bboxes_i = cache[index]['gt_bboxes']
if len(gt_bboxes_i) != 0:
break
return index
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""MixUp transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
# cache and pop images
self.results_cache.append(copy.deepcopy(results))
if len(self.results_cache) > self.max_cached_images:
if self.random_pop:
index = random.randint(0, len(self.results_cache) - 1)
else:
index = 0
self.results_cache.pop(index)
if len(self.results_cache) <= 1:
return results
if random.uniform(0, 1) > self.prob:
return results
index = self.get_indexes(self.results_cache)
retrieve_results = copy.deepcopy(self.results_cache[index])
# TODO: refactor mixup to reuse these code.
if retrieve_results['gt_bboxes'].shape[0] == 0:
# empty bbox
return results
retrieve_img = retrieve_results['img']
with_mask = True if 'gt_masks' in results else False
jit_factor = random.uniform(*self.ratio_range)
is_flip = random.uniform(0, 1) > self.flip_ratio
if len(retrieve_img.shape) == 3:
out_img = np.ones(
(self.dynamic_scale[1], self.dynamic_scale[0], 3),
dtype=retrieve_img.dtype) * self.pad_val
else:
out_img = np.ones(
self.dynamic_scale[::-1],
dtype=retrieve_img.dtype) * self.pad_val
# 1. keep_ratio resize
scale_ratio = min(self.dynamic_scale[1] / retrieve_img.shape[0],
self.dynamic_scale[0] / retrieve_img.shape[1])
retrieve_img = mmcv.imresize(
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio),
int(retrieve_img.shape[0] * scale_ratio)))
# 2. paste
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img
# 3. scale jit
scale_ratio *= jit_factor
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor),
int(out_img.shape[0] * jit_factor)))
# 4. flip
if is_flip:
out_img = out_img[:, ::-1, :]
# 5. random crop
ori_img = results['img']
origin_h, origin_w = out_img.shape[:2]
target_h, target_w = ori_img.shape[:2]
padded_img = np.ones((max(origin_h, target_h), max(
origin_w, target_w), 3)) * self.pad_val
padded_img = padded_img.astype(np.uint8)
padded_img[:origin_h, :origin_w] = out_img
x_offset, y_offset = 0, 0
if padded_img.shape[0] > target_h:
y_offset = random.randint(0, padded_img.shape[0] - target_h)
if padded_img.shape[1] > target_w:
x_offset = random.randint(0, padded_img.shape[1] - target_w)
padded_cropped_img = padded_img[y_offset:y_offset + target_h,
x_offset:x_offset + target_w]
# 6. adjust bbox
retrieve_gt_bboxes = retrieve_results['gt_bboxes']
retrieve_gt_bboxes.rescale_([scale_ratio, scale_ratio])
if with_mask:
retrieve_gt_masks = retrieve_results['gt_masks'].rescale(
scale_ratio)
if self.bbox_clip_border:
retrieve_gt_bboxes.clip_([origin_h, origin_w])
if is_flip:
retrieve_gt_bboxes.flip_([origin_h, origin_w],
direction='horizontal')
if with_mask:
retrieve_gt_masks = retrieve_gt_masks.flip()
# 7. filter
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.clone()
cp_retrieve_gt_bboxes.translate_([-x_offset, -y_offset])
if with_mask:
retrieve_gt_masks = retrieve_gt_masks.translate(
out_shape=(target_h, target_w),
offset=-x_offset,
direction='horizontal')
retrieve_gt_masks = retrieve_gt_masks.translate(
out_shape=(target_h, target_w),
offset=-y_offset,
direction='vertical')
if self.bbox_clip_border:
cp_retrieve_gt_bboxes.clip_([target_h, target_w])
# 8. mix up
ori_img = ori_img.astype(np.float32)
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32)
retrieve_gt_bboxes_labels = retrieve_results['gt_bboxes_labels']
retrieve_gt_ignore_flags = retrieve_results['gt_ignore_flags']
mixup_gt_bboxes = cp_retrieve_gt_bboxes.cat(
(results['gt_bboxes'], cp_retrieve_gt_bboxes), dim=0)
mixup_gt_bboxes_labels = np.concatenate(
(results['gt_bboxes_labels'], retrieve_gt_bboxes_labels), axis=0)
mixup_gt_ignore_flags = np.concatenate(
(results['gt_ignore_flags'], retrieve_gt_ignore_flags), axis=0)
if with_mask:
mixup_gt_masks = retrieve_gt_masks.cat(
[results['gt_masks'], retrieve_gt_masks])
# remove outside bbox
inside_inds = mixup_gt_bboxes.is_inside([target_h, target_w]).numpy()
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds]
mixup_gt_bboxes_labels = mixup_gt_bboxes_labels[inside_inds]
mixup_gt_ignore_flags = mixup_gt_ignore_flags[inside_inds]
if with_mask:
mixup_gt_masks = mixup_gt_masks[inside_inds]
results['img'] = mixup_img.astype(np.uint8)
results['img_shape'] = mixup_img.shape[:2]
results['gt_bboxes'] = mixup_gt_bboxes
results['gt_bboxes_labels'] = mixup_gt_bboxes_labels
results['gt_ignore_flags'] = mixup_gt_ignore_flags
if with_mask:
results['gt_masks'] = mixup_gt_masks
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(dynamic_scale={self.dynamic_scale}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'flip_ratio={self.flip_ratio}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'max_iters={self.max_iters}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border}, '
repr_str += f'max_cached_images={self.max_cached_images}, '
repr_str += f'random_pop={self.random_pop}, '
repr_str += f'prob={self.prob})'
return repr_str
|