Spaces:
Runtime error
Runtime error
File size: 8,071 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Union
from mmengine import fileio
from mmengine.logging import MMLogger
from mmpretrain.registry import DATASETS
from .categories import IMAGENET_CATEGORIES
from .custom import CustomDataset
@DATASETS.register_module()
class ImageNet(CustomDataset):
"""`ImageNet <http://www.image-net.org>`_ Dataset.
The dataset supports two kinds of directory format,
::
imagenet
βββ train
β βββclass_x
| | βββ x1.jpg
| | βββ x2.jpg
| | βββ ...
β βββ class_y
| | βββ y1.jpg
| | βββ y2.jpg
| | βββ ...
| βββ ...
βββ val
β βββclass_x
| | βββ ...
β βββ class_y
| | βββ ...
| βββ ...
βββ test
βββ test1.jpg
βββ test2.jpg
βββ ...
or ::
imagenet
βββ train
β βββ x1.jpg
β βββ y1.jpg
β βββ ...
βββ val
β βββ x3.jpg
β βββ y3.jpg
β βββ ...
βββ test
β βββ test1.jpg
β βββ test2.jpg
β βββ ...
βββ meta
βββ train.txt
βββ val.txt
Args:
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
split (str): The dataset split, supports "train", "val" and "test".
Default to ''.
data_prefix (str | dict): Prefix for training data. Defaults to ''.
ann_file (str): Annotation file path. Defaults to ''.
metainfo (dict, optional): Meta information for dataset, such as class
information. Defaults to None.
**kwargs: Other keyword arguments in :class:`CustomDataset` and
:class:`BaseDataset`.
Examples:
>>> from mmpretrain.datasets import ImageNet
>>> train_dataset = ImageNet(data_root='data/imagenet', split='train')
>>> train_dataset
Dataset ImageNet
Number of samples: 1281167
Number of categories: 1000
Root of dataset: data/imagenet
>>> test_dataset = ImageNet(data_root='data/imagenet', split='val')
>>> test_dataset
Dataset ImageNet
Number of samples: 50000
Number of categories: 1000
Root of dataset: data/imagenet
""" # noqa: E501
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif')
METAINFO = {'classes': IMAGENET_CATEGORIES}
def __init__(self,
data_root: str = '',
split: str = '',
data_prefix: Union[str, dict] = '',
ann_file: str = '',
metainfo: Optional[dict] = None,
**kwargs):
kwargs = {'extensions': self.IMG_EXTENSIONS, **kwargs}
if split:
splits = ['train', 'val', 'test']
assert split in splits, \
f"The split must be one of {splits}, but get '{split}'"
if split == 'test':
logger = MMLogger.get_current_instance()
logger.info(
'Since the ImageNet1k test set does not provide label'
'annotations, `with_label` is set to False')
kwargs['with_label'] = False
data_prefix = split if data_prefix == '' else data_prefix
if ann_file == '':
_ann_path = fileio.join_path(data_root, 'meta', f'{split}.txt')
if fileio.exists(_ann_path):
ann_file = fileio.join_path('meta', f'{split}.txt')
super().__init__(
data_root=data_root,
data_prefix=data_prefix,
ann_file=ann_file,
metainfo=metainfo,
**kwargs)
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [
f'Root of dataset: \t{self.data_root}',
]
return body
@DATASETS.register_module()
class ImageNet21k(CustomDataset):
"""ImageNet21k Dataset.
Since the dataset ImageNet21k is extremely big, contains 21k+ classes
and 1.4B files. We won't provide the default categories list. Please
specify it from the ``classes`` argument.
The dataset directory structure is as follows,
ImageNet21k dataset directory ::
imagenet21k
βββ train
β βββclass_x
| | βββ x1.jpg
| | βββ x2.jpg
| | βββ ...
β βββ class_y
| | βββ y1.jpg
| | βββ y2.jpg
| | βββ ...
| βββ ...
βββ meta
βββ train.txt
Args:
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (str | dict): Prefix for training data. Defaults to ''.
ann_file (str): Annotation file path. Defaults to ''.
metainfo (dict, optional): Meta information for dataset, such as class
information. Defaults to None.
multi_label (bool): Not implement by now. Use multi label or not.
Defaults to False.
**kwargs: Other keyword arguments in :class:`CustomDataset` and
:class:`BaseDataset`.
Examples:
>>> from mmpretrain.datasets import ImageNet21k
>>> train_dataset = ImageNet21k(data_root='data/imagenet21k', split='train')
>>> train_dataset
Dataset ImageNet21k
Number of samples: 14197088
Annotation file: data/imagenet21k/meta/train.txt
Prefix of images: data/imagenet21k/train
""" # noqa: E501
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif')
def __init__(self,
data_root: str = '',
split: str = '',
data_prefix: Union[str, dict] = '',
ann_file: str = '',
metainfo: Optional[dict] = None,
multi_label: bool = False,
**kwargs):
if multi_label:
raise NotImplementedError(
'The `multi_label` option is not supported by now.')
self.multi_label = multi_label
if split:
splits = ['train']
assert split in splits, \
f"The split must be one of {splits}, but get '{split}'.\
If you want to specify your own validation set or test set,\
please set split to None."
self.split = split
data_prefix = split if data_prefix == '' else data_prefix
if not ann_file:
_ann_path = fileio.join_path(data_root, 'meta', f'{split}.txt')
if fileio.exists(_ann_path):
ann_file = fileio.join_path('meta', f'{split}.txt')
logger = MMLogger.get_current_instance()
if not ann_file:
logger.warning(
'The ImageNet21k dataset is large, and scanning directory may '
'consume long time. Considering to specify the `ann_file` to '
'accelerate the initialization.')
kwargs = {'extensions': self.IMG_EXTENSIONS, **kwargs}
super().__init__(
data_root=data_root,
data_prefix=data_prefix,
ann_file=ann_file,
metainfo=metainfo,
**kwargs)
if self.CLASSES is None:
logger.warning(
'The CLASSES is not stored in the `ImageNet21k` class. '
'Considering to specify the `classes` argument if you need '
'do inference on the ImageNet-21k dataset')
|