import os import time import shutil import math import cv2 import torch import numpy as np from einops import rearrange from torch.optim import SGD, Adam, AdamW from tensorboardX import SummaryWriter import torch.nn.functional as F def warm_up_cosine_lr_scheduler(optimizer, epochs=100, warm_up_epochs=5, eta_min=1e-9): """ Description: - Warm up cosin learning rate scheduler, first epoch lr is too small Arguments: - optimizer: input optimizer for the training - epochs: int, total epochs for your training, default is 100. NOTE: you should pass correct epochs for your training - warm_up_epochs: int, default is 5, which mean the lr will be warm up for 5 epochs. if warm_up_epochs=0, means no need to warn up, will be as cosine lr scheduler - eta_min: float, setup ConsinAnnealingLR eta_min while warm_up_epochs = 0 Returns: - scheduler """ if warm_up_epochs <= 0: scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs, eta_min=eta_min) else: warm_up_with_cosine_lr = lambda epoch: eta_min + (epoch / warm_up_epochs) \ if epoch <= warm_up_epochs else \ 0.5 * (np.cos((epoch - warm_up_epochs) / (epochs - warm_up_epochs) * np.pi) + 1) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warm_up_with_cosine_lr) return scheduler class Averager(): def __init__(self, class_names=['all']): if 'all' not in class_names: class_names.append('all') self.values = {k: [] for k in class_names} def add(self, ks, vs): if torch.is_tensor(vs): vs = vs.cpu().tolist() for k, v in zip(ks, vs): self.values[k].append(v) self.values['all'].append(v) def item(self): return_dict = {} for k, v in self.values.items(): if len(v): return_dict[k] = sum(v) / len(v) else: return_dict[k] = 0 return return_dict class AveragerList(): def __init__(self): self.values = [] def add(self, vs): if torch.is_tensor(vs): vs = vs.cpu().tolist() if isinstance(vs, list): self.values += vs else: self.values += [vs] def item(self): return sum(self.values) / len(self.values) class Timer(): def __init__(self): self.v = time.time() def s(self): self.v = time.time() def t(self): return time.time() - self.v def time_text(t): if t >= 3600: return '{:.1f}h'.format(t / 3600) elif t >= 60: return '{:.1f}m'.format(t / 60) else: return '{:.1f}s'.format(t) _log_path = None def set_log_path(path): global _log_path _log_path = path def log(obj, filename='log.txt'): print(obj) if _log_path is not None: with open(os.path.join(_log_path, filename), 'a') as f: print(obj, file=f) def ensure_path(path, remove=True): basename = os.path.basename(path.rstrip('/')) if os.path.exists(path): print('{} exists!'.format(path)) # if remove and (basename.startswith('_') # or input('{} exists, remove? (y/[n]): '.format(path)) == 'y'): # shutil.rmtree(path) # os.makedirs(path) else: os.makedirs(path) def set_save_path(save_path, remove=True): ensure_path(save_path, remove=remove) set_log_path(save_path) writer = SummaryWriter(os.path.join(save_path, 'tensorboard')) return log, writer def compute_num_params(model, text=False): tot = int(sum([np.prod(p.shape) for p in model.parameters()])) if text: if tot >= 1e6: return '{:.1f}M'.format(tot / 1e6) else: return '{:.1f}K'.format(tot / 1e3) else: return tot def make_optimizer(param_list, optimizer_spec, load_sd=False): Optimizer = { 'sgd': SGD, 'adam': Adam, 'adamw': AdamW, }[optimizer_spec['name']] default_args = { 'sgd': {}, 'adam': { 'betas': (0.9, 0.999), 'eps': 1e-08, 'weight_decay': 0, 'amsgrad': False }, 'adamw': {}, }[optimizer_spec['name']] default_args.update(optimizer_spec['args']) optimizer = Optimizer(param_list, **default_args) if load_sd: optimizer.load_state_dict(optimizer_spec['sd']) return optimizer def make_coord(shape, ranges=None, flatten=True): """ Make coordinates at grid centers. """ coord_seqs = [] for i, n in enumerate(shape): if ranges is None: v0, v1 = -1, 1 else: v0, v1 = ranges[i] r = (v1 - v0) / (2 * n) seq = v0 + r + (2 * r) * torch.arange(n).float() coord_seqs.append(seq) ret = torch.stack(torch.meshgrid(*coord_seqs), dim=-1) if flatten: ret = ret.view(-1, ret.shape[-1]) return ret def to_coordinates(size=(56, 56), return_map=True): """Converts an image to a set of coordinates and features. Args: img (torch.Tensor): Shape (channels, height, width). """ # H, W # Coordinates are indices of all non zero locations of a tensor of ones of # same shape as spatial dimensions of image coordinates = torch.ones(size).nonzero(as_tuple=False).float() # Normalize coordinates to lie in [-.5, .5] coordinates[..., 0] = coordinates[..., 0] / (size[0] - 1) - 0.5 coordinates[..., 1] = coordinates[..., 1] / (size[1] - 1) - 0.5 # Convert to range [-1, 1] coordinates *= 2 if return_map: coordinates = rearrange(coordinates, '(H W) C -> H W C', H=size[0]) # [y, x] return coordinates def to_pixel_samples(img): """ Convert the image to coord-RGB pairs. img: Tensor, (3, H, W) """ coord = make_coord(img.shape[-2:]) rgb = img.view(3, -1).permute(1, 0) return coord, rgb def get_clamped_psnr(img, img_recon, rgb_range=1, crop_border=None): # Values may lie outside [0, 1], so clamp input img_recon = torch.clamp(img_recon, 0., 1.) # Pixel values lie in {0, ..., 255}, so round float tensor img_recon = torch.round(img_recon * 255) / 255. diff = img - img_recon if crop_border is not None: assert len(diff.size()) == 4 valid = diff[..., crop_border:-crop_border, crop_border:-crop_border] else: valid = diff psnr_list = [] for i in range(len(img)): psnr = 20. * np.log10(1.) - 10. * valid[i].detach().pow(2).mean().log10().to('cpu').item() psnr_list.append(psnr) return psnr_list def _ssim_pth(img, img2): """Calculate SSIM (structural similarity) (PyTorch version). It is called by func:`calculate_ssim_pt`. Args: img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). Returns: float: SSIM result. """ c1 = (0.01 * 255)**2 c2 = (0.03 * 255)**2 kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) window = torch.from_numpy(window).view(1, 1, 11, 11).expand(img.size(1), 1, 11, 11).to(img.dtype).to(img.device) mu1 = F.conv2d(img, window, stride=1, padding=0, groups=img.shape[1]) # valid mode mu2 = F.conv2d(img2, window, stride=1, padding=0, groups=img2.shape[1]) # valid mode mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img * img, window, stride=1, padding=0, groups=img.shape[1]) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, stride=1, padding=0, groups=img.shape[1]) - mu2_sq sigma12 = F.conv2d(img * img2, window, stride=1, padding=0, groups=img.shape[1]) - mu1_mu2 cs_map = (2 * sigma12 + c2) / (sigma1_sq + sigma2_sq + c2) ssim_map = ((2 * mu1_mu2 + c1) / (mu1_sq + mu2_sq + c1)) * cs_map return ssim_map.mean([1, 2, 3]) def calculate_ssim_pt(img, img2, crop_border, test_y_channel=False, **kwargs): """Calculate SSIM (structural similarity) (PyTorch version). ``Paper: Image quality assessment: From error visibility to structural similarity`` The results are the same as that of the official released MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/. For three-channel images, SSIM is calculated for each channel and then averaged. Args: img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: SSIM result. """ assert img.shape == img2.shape, f'Image shapes are different: {img.shape}, {img2.shape}.' if crop_border != 0: img = img[:, :, crop_border:-crop_border, crop_border:-crop_border] img2 = img2[:, :, crop_border:-crop_border, crop_border:-crop_border] if test_y_channel: img = rgb2ycbcr_pt(img, y_only=True) img2 = rgb2ycbcr_pt(img2, y_only=True) img = img.to(torch.float64) img2 = img2.to(torch.float64) ssim = _ssim_pth(img * 255., img2 * 255.) return ssim def calculate_psnr_pt(img, img2, crop_border, test_y_channel=False, **kwargs): """Calculate PSNR (Peak Signal-to-Noise Ratio) (PyTorch version). Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Args: img (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). img2 (Tensor): Images with range [0, 1], shape (n, 3/1, h, w). crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the calculation. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: PSNR result. """ assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.') if crop_border != 0: img = img[:, :, crop_border:-crop_border, crop_border:-crop_border] img2 = img2[:, :, crop_border:-crop_border, crop_border:-crop_border] if test_y_channel: img = rgb2ycbcr_pt(img, y_only=True) img2 = rgb2ycbcr_pt(img2, y_only=True) img = img.to(torch.float64) img2 = img2.to(torch.float64) mse = torch.mean((img - img2)**2, dim=[1, 2, 3]) return 10. * torch.log10(1. / (mse + 1e-8))